Analysis 1 (WS 2019/20) — Blatt 8

Unsere Chancen, die Scheinklausur zu bestehen, stehen 50:50, vielleicht sogar 60:60. (frei¹ nach Reiner Calmund, ehemaliger Fußballfunktionär)

Aufgaben zur Abgabe am Ende der Vorlesung am 11.12.2019

- 8.1. Berechnen Sie im Falle ihrer Existenz die folgenden Grenzwerte.
 - (a) $\lim_{n\to\infty}\frac{1}{n}\cos\left(\frac{1}{n}\right)$,
- **(b)** $\lim_{n\to\infty} (-1)^n \frac{\sqrt{n+1}}{\sqrt{n}},$
- (c) $\lim_{n\to\infty} \left(\frac{n}{\sqrt{n+1}} \sqrt{n}\right)$, (d) $\lim_{n\to\infty} \sqrt[n]{3^n + 4^n + 5^n}$,

Hinweis: In (d) können Sie 8.2 (iii) ohne Beweis verwenden.

Votieraufgaben

8.2. Einige wichtige Grenzwerte

Weisen Sie die folgenden Identitäten nach. Falls nicht anders angegeben, ist $a \in \mathbb{R}$ und $k \in \mathbb{N}$.

(i)
$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0, \quad |a| > 1,$$

(ii)
$$\lim_{n\to\infty} \sqrt[n]{n} = 1,$$

(iii)
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
, $a > 0$.

(iv)
$$\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$$

- **8.3.** Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge positiver reeller Zahlen, sodass $a:=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ existiert.
 - (a) Zeigen Sie: ist a > 1, so divergiert die Folge $(a_n)_{n \in \mathbb{N}}$. Ist a < 1, so ist $(a_n)_{n \in \mathbb{N}}$ eine Nullfolge. Geben Sie jeweils ein Beispiel einer divergenten und einer konvergenten Folge an mit a=1.
 - (b) Berechnen Sie im Falle ihrer Existenz die folgenden Grenzwerte und fügen Sie diese der Liste der wichtigen Grenzwerte hinzu.

(i)
$$\lim_{n\to\infty} \frac{a^n}{n!}$$
, (ii) $\lim_{n\to\infty} \frac{n^n}{n!}$

8.4. Sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge und $a=\lim_{n\to\infty}a_n$. Zeigen Sie, dass dann auch die Folge $(s_n)_{n\in\mathbb{N}},$

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^n a_k,$$

konvergent ist und $a=\lim_{n\to\infty}s_n$ gilt. Gilt auch die Umkehrung, d.h. folgt aus der Konvergenz von $(s_n)_{n\in\mathbb{N}}$ die Konvergenz von $(a_n)_{n\in\mathbb{N}}$?

¹original: "Unsere Chancen, das Viertelfinale zu erreichen, stehen 50:50, vielleicht sogar 60:60."

- **8.5.** Welche der folgenden Aussagen sind wahr, welche falsch? Geben Sie jeweils einen Beweis oder ein Gegenbeispiel an.
 - (a) Gilt $\lim_{n\to\infty} a_n = 0$ und ist $(b_n)_{n\in\mathbb{N}}$ beschränkt, so gilt auch $\lim_{n\to\infty} (a_n b_n) = 0$.
 - (b) Konvergieren $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, dann auch $(\max\{a_n,b_n\})_{n\in\mathbb{N}}$.
 - (c) Konvergiert $(|a_n|)_{n\in\mathbb{N}}$, so auch $(a_n)_{n\in\mathbb{N}}$.
 - (d) Konvergiert $(a_n)_{n\in\mathbb{N}}$, so auch $(|a_n|)_{n\in\mathbb{N}}$
 - (e) Gilt $\lim_{n\to\infty} a_n b_n = 0$, so gilt $\lim_{n\to\infty} a_n = 0$ oder $\lim_{n\to\infty} b_n = 0$.
 - (f) Gilt $\lim_{n\to\infty} a_{n+1} \frac{1}{2}a_n = 0$, so auch $\lim_{n\to\infty} a_n = 0$.

Zusatzaufgaben

8.6. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge nichtnegativer Zahlen. Sei $(a_n)_{n\in\mathbb{N}}$ gegeben durch

$$a_1 = \sqrt{x_1}, \quad a_2 = \sqrt{x_1 + \sqrt{x_2}}, \quad a_3 = \sqrt{x_1 + \sqrt{x_2 + \sqrt{x_3}}}, \quad \dots$$

(a) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ genau dann konvergiert, wenn ein $M\in\mathbb{R}$ existiert, sodass

$$\sqrt[2^n]{x_n} \le M$$
 für alle $n \in \mathbb{N}$.

(b) Folgern Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ im Fall $x_k=k$ konvergiert, d.h., dass

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{5+\dots}}}}}$$

eine reelle Zahl definiert.

(c) Sei $x_n = 1$ für alle $n \in \mathbb{N}$. Zeigen Sie, dass die Folge $(a_n)_{n \in \mathbb{N}}$ gegen den goldenen Schnitt konvergiert, d.h.

$$\frac{1+\sqrt{5}}{2} = \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$