24.12.17

Aufgabe 1

- a. Geben Sie die Definition einer Äquivalenzrelation auf einer beliebigen nichtleeren Menge X.
- *b.* Welche der folgenden Relationen auf $\mathbb{Z} \times \mathbb{Z}$ ist eine Äquivalenzrelation:

$$(n,m) = (\tilde{n},\tilde{m}) \Leftrightarrow n = \tilde{m} \wedge \tilde{n} = m$$

sowie

$$(n,m) \approx (\tilde{n},\tilde{m}) \Leftrightarrow n-m=\tilde{n}=\tilde{m}.$$

Aufgabe 2

Bestimmen Sie Supremum und Infimum der Menge

$$Q = \left\{ \frac{1}{n} + \frac{1}{m} : n, m \in \mathbb{N} \right\}.$$

Aufgabe 3

Zeigen Sie

$$\prod_{k=1}^n \left(1+\frac{2}{k}\right) = \frac{(n+1)(n+2)}{2}, \qquad n \geq 1.$$

Ist diese Formel auch für n = 0 sinnvoll?

Aufgabe 4

Die Reihe $\sum_n a_n$ sei konvergent. Welche der folgenden Reihen konvergiert?

$$a. \sum_{n \geqslant 1} \frac{n+1}{n} a_n$$

b.
$$\sum_{n>1} \sqrt[n]{n} a_n$$

c.
$$\sum_{n\geq 1} a_n |a_n|$$

a.
$$\sum_{n\geqslant 1} \frac{n+1}{n} a_n$$
 b. $\sum_{n\geqslant 1} \sqrt[n]{n} a_n$ c. $\sum_{n\geqslant 1} a_n |a_n|$ d. $\sum_{n\geqslant 1} \frac{a_n}{1+|a_n|}$

Aufgabe 5

Zeigen Sie, dass $[1, \infty)$ und (0, 1] gleichmächtig sind.

Aufgabe 6

Sei $(a_n)_{n \ge 1}$ rekursiv definiert durch

$$a_1 = 1,$$
 $a_{n+1} = 1 + \frac{a_n}{2},$ $n \ge 1.$

Zeigen Sie, dass diese Folge konvergiert, und bestimmen Sie Ihren Grenzwert.

Ws 2017/18 Weihnachtsblatt

24.12.17

Aufgabe 7

Bestimmen Sie die Häufungswerte der Folgen mit den Gliedern

a.
$$\left(\frac{1+i}{2}\right)^n$$

$$b. \quad \frac{\mathrm{i}n}{n+1}$$

a.
$$\left(\frac{1+i}{2}\right)^n$$
 b. $\frac{in}{n+1}$ c. $\left(-\frac{2}{3}\right)^{-n} \frac{(-2)^n (n+1)}{n(-1)^n 3^n}$

Aufgabe 8

Welche Aussagen sind wahr?

- *a.* In einer beschränkten Menge $A \subset \mathbb{R}$ existiert immer ein Element $a = \inf A$.
- b. Ein abgeschlossenes Intervall ist beschränkt.
- c. Aus ab = -ab folgt b = 0.
- d. Es gibt kein leeres Intervall.
- e. In Q besitzt keine Teilmenge ein Supremum.

Aufgabe 9

Sei $q_n = |a_{n+1}/a_n|$. Welche der folgenden Aussagen über $\sum a_n$ sind korrekt?

- a. Hat (q_n) keinen Grenzwert, so ist die Reihe divergent.
- b. Ist $q_n < 1$ für fast alle n, so ist die Reihe konvergent.
- *c.* Ist $q_n < 2/3$ für fast alle n, so ist die Reihe konvergent.
- *d.* Ist $q_n = 1$ für unendlich viele n, so ist die Reihe divergent.
- e. Ist $q_n = 1$ für fast alle n, so ist die Reihe divergent.

Aufgabe 10

Sei (a_n) eine Folge in $(0, \infty)$ und

$$b_n = \sum_{k=1}^n (a_k + a_k^{-1}), \quad n \ge 1.$$

Dann ist $(1/b_n)$ eine Nullfolge.

Aufgabe 11

Welche Aussagen über eine Funktion $f: [0,1] \to \mathbb{R}$ sind wahr?

- a. Ist f monoton, so ist f beschränkt.
- b. Ist f unbeschränkt, so ist f nicht stetig.
- c. We chselt f das Vorzeichen, so hat f eine Nullstelle.
- d. Nimmt f ihr Minimum und Maximum an, so ist f stetig.
- e. Ist f injektiv und stetig, so ist f streng monoton.

W.3

Ws 2017/18 Weihnachtsblatt

24.12.17

Aufgabe 12

Gibt es eine stetige surjektive Funktion $f \colon \mathbb{R} \to \mathbb{R}$, die jeden Wert genau dreimal annimmt?

Aufgabe 13

Sei π : $\mathbb{A}_n \to \mathbb{A}_n$ eine Bijektion. Ist n ungerade, so ist $\prod_{k=1}^n (\pi_k - k)$ gerade.

Aufgabe 14

Ist eine Funktion $[a, b] \rightarrow \mathbb{R}$ stetig und injektiv, so ist sie streng monoton.

Aufgabe 15

Sei $\sum_{n \ge 1} a_n$ konvergent mit positiven Gliedern. Zu einer beliebigen Abzählung q von $\mathbb Q$ definiere man dann

$$f: \mathbb{R} \to \mathbb{R}, \quad f(t) = \sum_{n: q_n \leq t} a_n.$$

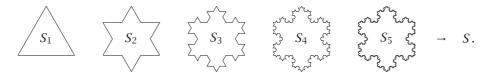
Dann ist f a. streng monoton, b. in jedem irrationalen Punkt stetig, c. in jeder rationalen Zahl $r = q_n$ unstetig mit Sprunghöhe a_n .

Aufgabe 16

Ist $f: [0,1] \to [0,1]$ stetig mit f(0) = f(1) = 0, so existiert zu jedem $n \ge 1$ ein Punkt $x \in [0,1]$ mit f(x) = f(x+1/n) für $x \in I_n = [0,1-1/n]$.

Aufgabe 17

Die Schnocke – das ist die Kochsche Schneeflocke – ist der Grenzwert S der geometrischen Folge:

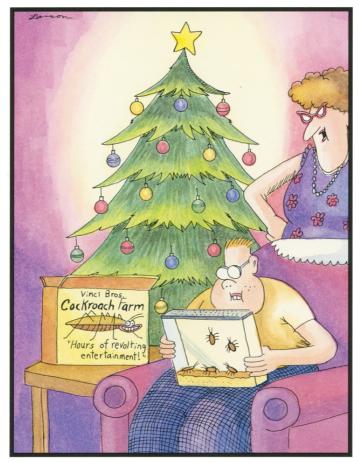


Zeigen Sie, dass S endlichen Flächeninhalt, aber unendlichen Umfang hat.

W.4

Ws 2017/18 Weihnachtsblatt

24.12.17



Now remember, Cory, show us that you can take good care of these little fellows and maybe *next* year we'll get you that puppy