Ss 2018 11.04.18

Votieraufgaben

Ist $f: [a,b] \to \mathbb{R}$ eine Regelfunktion und $\phi: \mathbb{R} \to \mathbb{R}$ stetig, so ist auch $\phi \circ f$ eine Regelfunktion.

Sei $f: [a,b] \to \mathbb{R}$ stetig. Dann existiert zu jedem $\varepsilon > 0$ ein $\delta > 0$, so dass

$$\left| \int_a^b f - \sum_{k=1}^n f(t_k)(t_k - t_{k-1}) \right| < \varepsilon$$

für jede Zerlegung $Z=(t_0,...,t_n)$ mit Feinheit $\sup_{1\leq k\leq n}(t_k-t_{k-1})<\delta$. Hinweis: Man verwende die gleichmäßige Stetigkeit von f.

Schriftaufgaben

3 Ist

$$f: \ [-1,1] \to \mathbb{R}, \quad f(t) = \begin{cases} \frac{1}{n+2}, & \frac{1}{n+1} < t \le \frac{1}{n}, \\ \frac{1}{n+2}, & -\frac{1}{n} < t \le -\frac{1}{n+1}, & n \ge 1 \\ 0, & t = 0, \end{cases}$$

eine Treppenfunktion, eine Regelfunktion, oder keins von beidem?

Sei $f \in R_a^b$. Dann existiert zu jedem $\varepsilon > 0$ ein $\varphi \in C([a,b])$ mit

$$\int_{a}^{b} |f - \varphi| < \varepsilon.$$

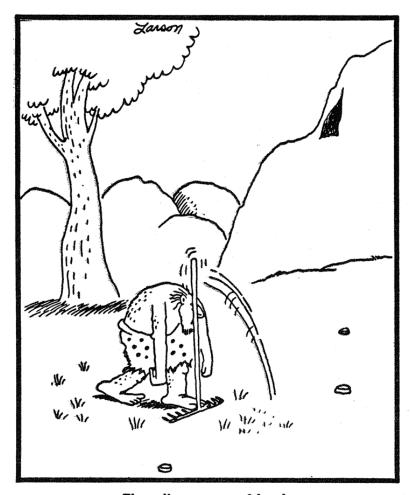
Jede Treppenfunktion ist der punktweise Limes stetiger Funktionen. Warum kann die Konvergenz im Allgemeinen nicht gleichmäßig sein?

Zusatzaufgabe

Es sei f eine Regelfunktion auf [a-1,b+1] und $\tau_h f = f(\cdot + h)$. Dann existiert zu jedem $\varepsilon > 0$ ein $\delta \in (0,1)$, so dass

$$\int_a^b |\tau_h f - f| < \varepsilon, \qquad |h| < \delta.$$

Ss 2018 11.04.18



The discovery of tools

2

20.04.18

Votieraufgaben

Ss 2018

7 Bestimmen sie die folgenden Integrale.

$$a. \int_{0}^{1} t^{2} e^{-t} dt \qquad b. \int_{0}^{1} t e^{-t^{2}} dt \qquad c. \int_{0}^{1} t \sqrt{1 + t^{2}} dt \qquad d. \int_{0}^{1} \frac{t}{\sqrt{1 + t^{2}}} dt$$

$$e. \int_{-\pi}^{\pi} e^{-t} \cos t dt \qquad f. \int_{0}^{\pi} \sin nt \sin mt dt, \quad n, m \in \mathbb{Z}$$

- 8 Das Integral $\int_1^\infty \frac{\sin t}{t} dt$ konvergiert, aber nicht absolut.
- 9 Welche der folgenden uneigentlichen Integrale konvergieren für welche Parameter? Dabei ist $n \in \mathbb{N}$ und $\alpha \in \mathbb{R}$.

a.
$$\int_0^\infty t^n e^{t^2} dt \qquad b. \quad \int_0^\infty \frac{\sin t}{t^\alpha} dt \qquad c. \quad \int_0^\infty \frac{t^{\alpha - 1}}{1 + t} dt$$

Schriftaufgaben

Bestimmen sie die folgenden Integrale.

a.
$$\int_0^\infty t^2 e^{-t} dt$$
 b. $\int_0^\infty \frac{dt}{1+t^3}$ c. $\int_0^\infty e^{-t} \sin t dt$
d. $\int_{-\pi/2}^{\pi/2} \cos^3 t dt$ e. $\int_0^\pi e^{-\cos t} \sin 2t dt$

Für alle $m, n \in \mathbb{N}$ zeige man

$$\int_0^1 t^m \log^n t \, \mathrm{d}t = (-1)^n \frac{n!}{(m+1)^{n+1}}.$$

Hieraus folgt

$$\int_0^1 t^t \, \mathrm{d}t = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n^n}.$$

Zusatzaufgabe

Sei $f \colon [a,b] \to \mathbb{R}$ unendlich oft differenzierbar. Zeigen Sie, dass für $t \in [a,b]$

$$f(t) = f(a) + \int_{a}^{t} f'(s) ds$$

= $f(a) + f'(a)(t - a) + \int_{a}^{t} (t - s)f''(s) ds$.

Wie kann man diese Formel induktiv so verallgemeinern, dass man ein Polynom n-ter Ordnung in t-a plus einen Integralterm mit der n+1-ten Ableitung von f erhält?

20.04.18

The elephant's nightmare

27.04.18

Votieraufgaben

Für a, b > 0 gilt

$$\int_0^\infty \frac{\cos at - \cos bt}{t} \, \mathrm{d}t = \log \frac{b}{a}.$$

Gegeben ist die Differenzialgleichung

$$\dot{x} = x^2 + 1 - t^2$$
.

- a. Skizzieren sie das Richtungsfeld unter Zuhilfenahme der Isoklinen, also der Kurven in der (t,x)-Ebene, in denen das Richtungsfeld konstante Steigung
- b. Bestimmen sie sämtliche Lösungen dieser Gleichung.
- c. Welche Lösungen existieren auf einem unendlichen Zeitintervall, welche auf
- 15 Bestimmen sie sämtliche Lösungen der Differenzialgleichung

a.
$$\dot{x} + x \sin t = \sin 2t$$
, b. $\dot{x} - 3x \tan t = 1$.

b.
$$\dot{x} - 3x \tan t = 1$$
.

Schriftaufgaben

16 Man löse die folgenden Anfangswertprobleme.

a.
$$\dot{x} = x \sin t$$
, $x(0) = 0$

b.
$$\dot{x} = x \sin t + t^2 \exp(-\cos t), \ x(0) = 1$$

c.
$$t\dot{x} + x = x^2 \log t$$
, $x(1) = 1$.

Lemma von Gronwall Für die stetige Funktion $u: [0,T] \to \mathbb{R}$ gelte

$$0 \le u(t) \le a + b \int_0^t u(s) \, \mathrm{d}s, \qquad 0 \le t \le T.$$

Dann ist

$$0 \le u(t) \le a e^{bt}$$
, $0 \le t \le T$.

Insbesondere ist $u \equiv 0$, falls a = 0.

Hinweis: Setze $v(t) = a + b \int_0^t u(s) ds$ und zeige, dass $e^{-bt}v(t)$ monoton fällt.

Zusatzaufgabe

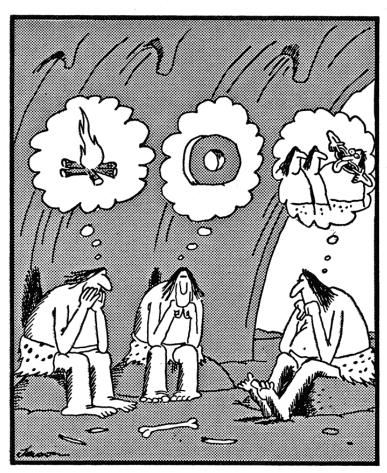
Man bestimme eine Differenzialgleichung erster Ordnung für folgende Scharen von Kurven mit dem Parameter $c \in \mathbb{R}$.

$$a \quad \mathbf{v} = ct^2$$

b.
$$x = ct^2 + c$$

a.
$$x = ct^2$$
 b. $x = ct^2 + c$ c. $x = ct^2 + c|c|$

27.04.18



Primitive think tanks

Schriftaufgaben — Wegen des Feiertags sind alle Aufgaben schriftlich

- Zeigen sie anhand der Kreisparametrisierung $\gamma(t)=(\cos t\sin t)$, dass für Kurven im Allgemeinen der Mittelwertsatz der Differenzialrechnung *nicht gilt*. Woran liegt das?
- Konstruieren sie eine nicht rektifizierbare Kurve mit Spur [0,1].
- Bestimmen sie die Länge der folgenden Kurven.

a.
$$[a,b] \to \mathbb{R}^2, \quad t \mapsto (t^3, 3t^2/2),$$

b.
$$[-3\pi, 3\pi] \rightarrow \mathbb{R}^3$$
, $t \mapsto t(\cos t, \sin t, t)$.

Sei γ : $[a,b] \to E$ eine C^1 -Kurve, φ : $[c,d] \to [a,b]$ eine C^1 -Parametertransformation und $\gamma_* = \gamma \circ \varphi$. Dann gilt

$$\int_{a}^{b} \|\dot{y}(t)\|_{E} dt = \int_{c}^{d} \|\dot{y}_{*}(t)\|_{E} dt.$$

Eine Peanokurve ist nicht rektifizierbar.

Sonstige Aufgabe außer Konkurrenz

24 *Peanokurve* Sei $u: \mathbb{R} \to [0,1]$ eine stetige Funktion mit

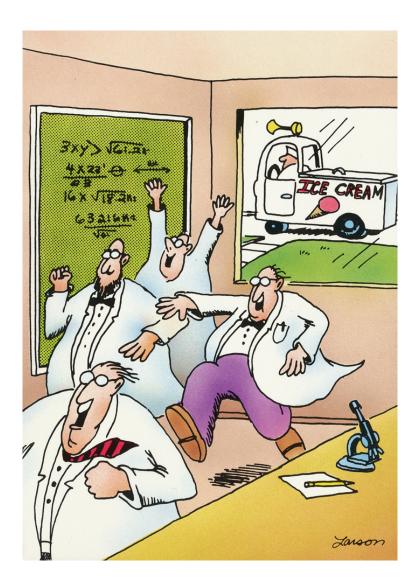
$$u(t+2) = u(t),$$
 $u(t) = \begin{cases} 0, & 0 \le t \le 1/3, \\ 1, & 2/3 \le t \le 1. \end{cases}$

Definiere dann $\gamma_0(t) = (u(t), u(3t))$ und damit

$$y(t) = \sum_{k \ge 0} 2^{-k-1} y_k(t), \qquad y_k(t) = y_0(9^k t).$$

Dann bildet γ das Intervall [0,1] surjektiv auf $[0,1]^2$ ab.

Ss 2018 04.05.18



11.05.18

Votieraufgaben

- Man gebe Beispiele für Kurven $\gamma: [0,1] \to \mathbb{R}^2$ mit folgenden Eigenschaften:
 - a. Injektiv auf [0,1), aber nicht doppelpunktfrei.
 - b. Der zugehörige Weg ist regulär, diese Parametrisierung jedoch nicht.
 - c. Differenzierbar, aber nicht rektifizierbar.
 - d. Keine topologisch äquivalente Parametrisierung ist lipschitz.
- Zeigen sie, dass der Graph der Funktion

$$f: [0,1] \to \mathbb{R}, \quad f(t) = \begin{cases} |t \sin 1/t|, & t > 0, \\ 0, & t = 0, \end{cases}$$

nicht D^1 ist.

Besitzt ein Weg ω eine stückweise stetig differenzierbare Parametrisierung, so besitzt er auch eine stetig differenzierbare Parametrisierung. Gilt dies auch für »stückweise regulär«? *Hinweis:* Es genügt, eine aus zwei Stücken bestehende Parametrisierung zu betrachten.

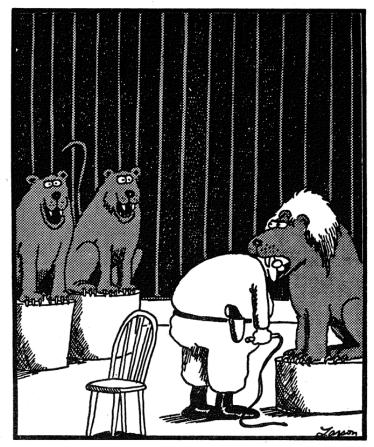
Schriftaufgaben

- Sei $\gamma\colon I\to E$ stetig und rektifizierbar. Dann existiert zu jedem $\varepsilon>0$ eine C^1 -Kurve $\gamma_\varepsilon\colon I\to E$ mit $\|\gamma-\gamma_\varepsilon\|_{[0,1]}<\varepsilon$.
- Sei I ein kompaktes Intervall und (y_n) eine gleichmäßig konvergente Folge in $C^0(I,\mathbb{R}^n)$ mit Grenzkurve y.
 - a. Sind die y_n rektifizierbar und ihre Längen $L(y_n)$ gleichmäßig beschränkt, so ist auch y rektifizierbar, und es gilt

$$L(\gamma) \leq \liminf_{n \to \infty} L(\gamma_n).$$

- b. Es gilt nicht notwendigerweise Gleichheit.
- *c.* Die Behauptung gilt im Allgemeinen nicht mehr, wenn die Längen nicht gleichmäßig beschränkt sind.

11.05.18



"Ernie's a chicken, Ernie's a chicken. . ."

18.05.18

Schriftaufgaben — Wegen des Feiertags sind alle Aufgaben schriftlich

- Sei $A: V \to W$ eine lineare Abbildung zwischen zwei normierten Vektorräumen. Dann gilt Ah = o(h) genau dann, wenn A = 0.
- 31 Die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & (x,y) \neq 0, \\ 0, & (x,y) = 0. \end{cases}$$

besitzt im Nullpunkt sämtliche Richtungsableitungen, ist dort aber nicht stetig.

32 Gegeben ist die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2}, & (x,y) \neq 0, \\ 0, & (x,y) = 0. \end{cases}$$

Zeigen sie, dass f alle partiellen Ableitungen zweiter Ordnung besitzt. Bestimmen sie diese Ableitungen, insbesondere im Nullpunkt.

Zeigen sie, dass $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x) = \begin{cases} |x|_2^2 \sin|x|_2^{-1}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

überall differenzierbar ist. Besitzt f überall stetige partielle Ableitungen?

Sonstige Aufgabe außer Konkurrenz

Sei $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar und $\lambda \in \mathbb{R}$. Gilt $f(tx) = t^{\lambda} f(x)$ für alle x und t > 0, so folgt

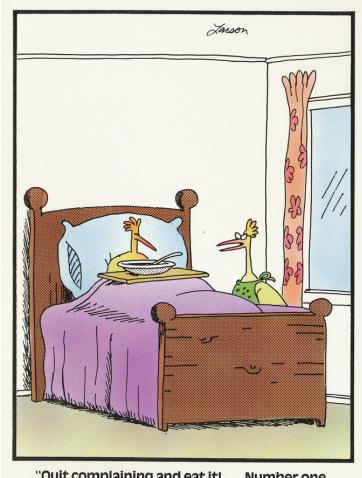
$$Df(x) x = \lambda f(x)$$
.

Hiervon gilt auch die Umkehrung. Hinweis: Bestimmen sie eine DGl für

$$\varphi = t^{\lambda} f(x) - f(tx).$$

Die Abgaben werden am 30. Juni in der Vorlesung eingesammelt.

Ss 2018 18.05.18



"Quit complaining and eat it! . . . Number one, chicken soup is good for the flu — and number two, it's nobody we know."

7

Ss 2018 01.06.18

Votieraufgaben

Rayleighquotient Für eine symmetrische $n \times n$ -Matrix A heißt

$$\varphi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}, \quad \varphi(x) = \frac{1}{2} \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$$

der *Rayleighquotient*. Bestimmen sie die kritischen Punkte x_0 von φ und die zugehörigen kritischen Werte $\varphi(x_0)$.

Variante des Lemmas von Hadamard Sei $f \in C^2(\Omega)$ und $0 \in \Omega$. Dann gibt es Funktionen $g_1, ..., g_n \in C^1(\Omega)$, so dass lokal um 0

$$f(x) = f(0) + \sum_{i=1}^{n} x_i g_i(x).$$

Sei I ein kompaktes Intervall und C(I) mit der Supremumsnorm versehen. Dann ist

$$\Phi: C(I) \to \mathbb{R}, \qquad \Phi(f) = \frac{1}{2} \int_{I} f^{2}(t) dt$$

differenzierbar mit

$$D\Phi(f)\eta = \int_I f(t)\eta(t)\,\mathrm{d}t.$$

Schriftaufgaben

Seien $f,g:\mathbb{R}^n\to\mathbb{R}$ differenzierbare Funktionen und $\varphi=fg$.

a. Bestimmen sie $D\varphi(x)h$ für $h \in \mathbb{R}^n$.

b. Bestimmen sie $\nabla \varphi(x)$ bezüglich des Standardskalarprodukts.

Ist $f: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar und L-lipschitz, so ist Df gleichmäßig beschränkt in dem Sinne, dass in jedem Punkt

$$||Df(x)|| = \sup_{0 \neq h \in \mathbb{R}^n} \frac{|Df(x)h|}{|h|} \leq L.$$

Zusatzaufgabe

Die Funktion $u \in C^2(\mathbb{R}^2)$ erfülle die Differenzialgleichung $yu_x = xu_y$. Dann ist Du(0,0) = 0, und es existiert ein $\varphi \in C^1([0,\infty))$ derart, dass $u(x,y) = \varphi(x^2 + y^2)$. Gilt dies auch, wenn nur $u \in C^1(\mathbb{R}^2)$ vorausgesetzt wird?

01.06.18

"That was incredible. No fur, claws, horns, antlers, or nothin:...Just soft and pink."

08.06.18

Votieraufgaben

Sei $u: \mathbb{R}^2 \to \mathbb{R}$ zweimal stetig differenzierbar und

$$v(r, \varphi) = u(r \cos \varphi, r \sin \varphi).$$

Dann gilt

$$u_{xx}+u_{yy}=v_{rr}+\frac{1}{r}v_r+\frac{1}{r^2}v_{\varphi\varphi}.$$

- Nichtdegenerierte kritische Punkte einer skalaren C^2 -Funktion sind isoliert. Das heißt, in einer Umgebung eines solchen kritischen Punktes existiert kein weiterer kritischer Punkt.
- Ist p ein beliebiges Polynom mit reellen oder komplexen Koeffizienten, so sind Real- und Imaginärteil von $p(x+\mathrm{i} y)$ harmonische Funktionen in x und y, das heißt, es gilt

$$f_{xx} + f_{yy} = 0.$$

Schriftaufgaben

44 Untersuchen sie die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x, y) = y^2 - 3x^2y + 2x^4$$

auf Extremalstellen.

45 Sei $\Omega \subset \mathbb{R}^n$ offen und konvex und $f:\Omega \to \mathbb{R}^n$ stetig differenzierbar. Gilt in jedem Punkt $x\in \Omega$

$$\langle Df(x)h,h\rangle > 0, \qquad h \in \mathbb{R}^n \setminus \{0\}$$

so ist f auf Ω injektiv.

Zusatzaufgabe

Sei $\Omega \subset \mathbb{R}^n$ beliebig, aber nicht leer, sei $x_0 \in \Omega$, und für $f: \Omega \to \mathbb{R}^n$ sei

$$[f]_{\Omega} = \sup_{\substack{u \neq v \\ u, v \in \Omega}} \frac{|f(u) - f(v)|}{|u - v|}.$$

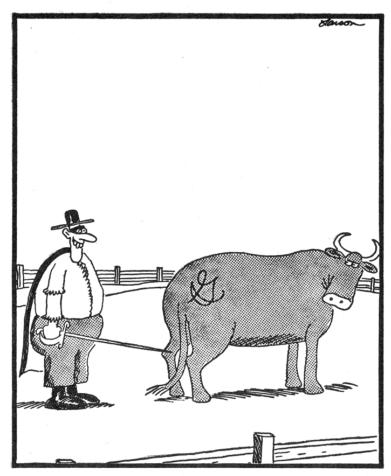
Dann gilt:

a. $L = \{ f \in C(\Omega, \mathbb{R}^n) : f(x_0) = 0, [f]_{\Omega} < \infty \}$ ist ein reeller Vektorraum.

b. $[\cdot]_{\Omega}$ definiert auf *L* eine Norm.

c. Mit dieser Norm ist L vollständig.

08.06.18



Practicing his skills wherever possible, Zorro's younger and less astute brother, Gomez, had a similar career cut short.

9

Ss 2018 15.06.18

Votieraufgaben

Sei $K \subset \mathbb{R}^n$ nicht-leer und konvex. Dann ist auch

$$d: \mathbb{R}^n \to \mathbb{R}, \quad d(x) = \operatorname{dist}(x, K) = \inf_{u \in K} \|x - u\|$$

konvex.

- Sei $K \subset \mathbb{R}^n$ nicht-leer, kompakt und konvex. Ist $f: K \to \mathbb{R}$ stetig und konvex, so nimmt f ihr Supremum auf dem Rand von K an.
- Sei $f: x \mapsto \langle a, x \rangle + b$ eine affine Funktion auf dem \mathbb{R}^n . Dann nimmt f ihr Maximum über der konvexen Hülle von m Punkten $x_1, ..., x_m$ in \mathbb{R}^n in wenigstens einem dieser Punkte an.
- 50 Ist $f: \mathbb{R}^n \to \mathbb{R}$ strikt konvex und *koerziv*, das heißt

$$\lim_{|x|\to\infty}f(x)=\infty,$$

so besitzt f genau eine lokale Minimalstelle x_0 , und es gilt $f(x_0) = \min_{\mathbb{R}^n} f$.

Schriftaufgaben

Sei $\Omega \subset \mathbb{R}^n$ offen und konvex. Ist $f: \Omega \to \mathbb{R}$ konvex, so sind es auch die Mengen

$$\Omega_c = \{x \in \Omega : f(x) < c\}, \qquad c \in \mathbb{R}.$$

Eine C^1 -Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist von der Form $f(x) = \langle a, x \rangle + b$ genau dann, wenn sowohl f als auch -f konvex sind.

15.06.18

22.06.18

Votieraufgaben

Finden Sie zwei 2×2 -Matrizen A und B, für die

$$(A+B)^2 \neq A^2 + 2AB + B^2$$
, $e^{A+B} \neq e^A e^B$.

Sei P_n der Raum aller reellen Polynome vom Grad kleiner als n, und

$$D: P_n \rightarrow P_n, \quad Dp = p'$$

- der Differenziationsoperator. a. Bestimmen Sie eine Basis in P_n , in der $D = \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}$. b. Bestimmen Sie in dieser Basis e^{Dt} .
- c. Zeigen Sie ohne Bezug auf eine Basis, dass

$$e^{Dt} = H^t : P_n \to P_n, \quad H^t p = p(\cdot + t).$$

Gegeben ist die homogene lineare Differnzialgleichung zweiter Ordnung,

$$\ddot{u} + 2\alpha\dot{u} + \beta^2 u = 0.$$

- a. Schreiben Sie diese Gleichung als zweidimensionales System erster Ordnung.
- *b.* Beschreiben Sie für $|\alpha| > |\beta|$, $|\alpha| = |\beta|$, und $|\alpha| < |\beta|$ das Phasenportrait.

Schriftaufgaben

Bestimmen Sie e^J und e^{At} für

$$A=\alpha I+\omega J, \qquad I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad J=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Die aus einer Fundamentallösung in einem Koordinatensystem gebildete Matrix $M(t) = [\varphi_1(t), ..., \varphi_n(t)]$ heißt *Fundamentalmatrix*. Für diese gilt

$$M(t)M(t_0)^{-1} = e^{(t-t_0)A}$$

für jedes $t_0 \in \mathbb{R}$. Unter welchen Bedingungen ist M(t) eine 1-Parametergruppe?

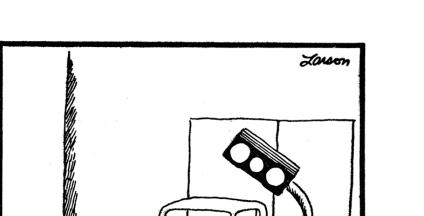
- a. Ist λ ein Eigenwert von A, so ist e^{λ} ein Eigenwert von e^{A} .
 - *b.* Es gibt keine reelle 2×2 -Matrix *L* mit

$$e^L = \begin{pmatrix} -1 & 0 \\ -1 & 4 \end{pmatrix}.$$

- c. Ist ||A I|| hinreichend klein, so gibt es einen Operator L mit $e^L = A$.
- *d.* Inwieweit ist *L* eindeutig bestimmt?

22.06.18

Ss 2018



"Well, don't look at me, idiot!...I said we should've flown!"

29.06.18

Votieraufgaben

- Bestimmen sie den Typ der Differenzialgleichung $\dot{x} = Ax$ für folgende Matrizen A, sowie diejenigen Anfangswerte, für die $\lim_{t\to\infty} x(t) = 0$ gilt.
 - a. $\begin{pmatrix} -1 & 0 \\ 2 & -2 \end{pmatrix}$ b. $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ c. $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ d. $\begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix}$
- Betrachten sie die inhomogene *n*-dimensionale Differenzialgleichung $\dot{x} = Ax + b$ mit det $A \neq 0$. Bestimmen sie eine affine Transformation x = Py + c, die diese Gleichung in eine homogene Gleichung $\dot{y} = By$ transformiert. Bestimmen sie damit die allgemeine Lösung dieser Gleichung. Wie sieht diese Lösung aus, wenn $\det A = 0$?
- Betrachten sie im \mathbb{R}^3 die Differenzialgleichung $\dot{x} = Ax$ mit $A = \begin{pmatrix} 1 \\ 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}$.
 - a. Zu welchem Diagonaloperator ist A ähnlich?
 - b. Welche Struktur hat die allgemeine Lösung?
 - c. Bestimmen sie die allgemeine Lösung explizit.
 - *d.* Lösen sie damit das Anfangswertproblem mit $x(0) = (2,4,3)^{T}$.

Schriftaufgaben

Lösen sie das Anfangswertproblem $\dot{x} = Ax$, $x(0) = x_0$ für folgende A und x_0 .

a.
$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$
, $x_0 = \begin{pmatrix} 3 \\ -9 \end{pmatrix}$

a.
$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$
, $x_0 = \begin{pmatrix} 3 \\ -9 \end{pmatrix}$ b. $A = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$, $x_0 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$

$$c. \quad A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad x_0 = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

Zeigen sie, dass die Funktionen $e^{\lambda_1 t}$,..., $e^{\lambda_n t}$ linear unabhängig genau dann sind, wenn die λ_k paarweise verschieden sind.

Zusatzaufgabe

Zeigen sie: Das Spektrum von A liegt in der rechten komplexen Halbebene genau dann, wenn

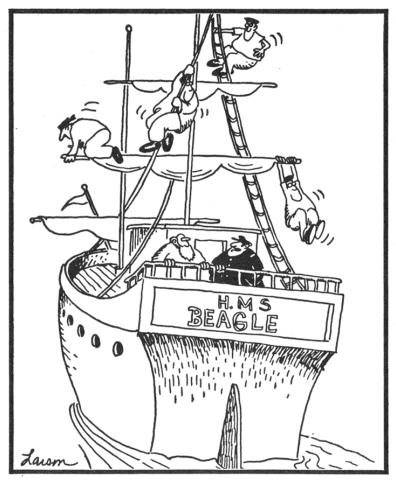
$$\limsup_{t\to\infty}|\varphi(t)|=\infty$$

für jede Lösung φ von $\dot{x} = Ax$ außer der Gleichgewichtslösung. Es liegt auf der imaginären Achse genau dann, wenn

$$\lim_{t \to +\infty} \frac{1}{t} \log(1 + |\varphi(t)|) = 0$$

für jede Lösung φ von $\dot{x} = Ax$ außer der Gleichgewichtslösung.

29.06.18



"Well, Mr. Darwin....Have you reached any conclusions, so far?"

06.07.18

Votieraufgaben

65 *a.* Sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt und ν ein stetiges Vektorfeld auf V, für das mit einer Konstanten $a \ge 0$ gilt

$$\langle v(x), x \rangle \leq a(1 + ||x||^2), \quad x \in V.$$

Dann gilt für jede Lösungskurve φ von ν die Abschätzung

$$\|\varphi^t(x)\| \le (1 + \|x\|)e^{at}, \quad t \ge 0.$$

- b. Was muss vorausgesetzt werden, damit Entsprechendes für $t \leq 0$ gilt?
- Sei $\varphi \colon (a,b) \to V$ Lösungskurve eines stetigen Vektorfeldes ν . Ist die Spur von φ in einer kompakten Teilmenge des Definitionsbereiches von ν enthalten, so ist φ gleichmäßig stetig. Falls $b < \infty$, so existiert auch $\lim_{t \neq b} \varphi(t)$.
- 67 Sei φ Lösungskurve eines stetigen Vektorfeldes auf einem Gebiet Ω . Ist

$$T = \sup\{t \geq 0 : \varphi([0,t]) \subset \Omega\} < \infty$$

so existiert zu jeder kompakten Teilmenge $K\subset\Omega$ eine monoton steigende Folge $t_1< t_2<...\nearrow T$ mit $\varphi(t_n)\notin K$.

Schriftaufgaben

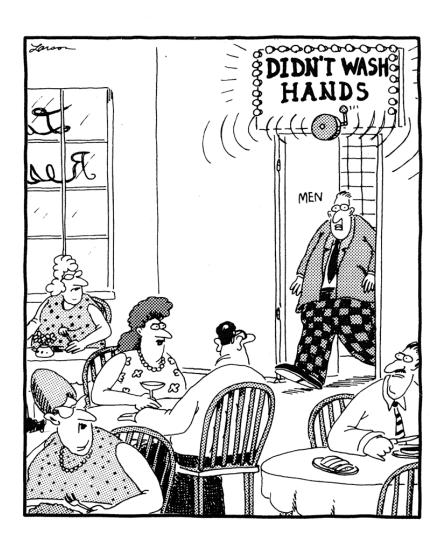
- Welcher Differenzialgleichung genügt die Logarithmusfunktion? Zeichnen Sie die Lösungen im (x,t)-Raum.
- Zeigen sie, dass für die Differenzialgleichung $x = t\dot{x}$ der Existenz- und Eindeutigkeitssatz nicht gilt.

Zusatzaufgabe

Sei ν ein C^1 -Vektorfeld auf V und α : $V \to \mathbb{R}$ eine positive C^1 -Funktion. Dann besitzen die Vektorfelder ν und $w = \alpha \nu$ dieselben Lösungskurven. Gilt das auch, wenn C^1 durch C^1 oder C^1

12.2

Ss 2018



13.07.18

Votieraufgaben

71 Transformieren sie die Differenzialgleichung

$$\dot{x} = y + x(1 - x^2 - y^2)$$

$$\dot{y} = -x + y(1 - x^2 - y^2)$$

in Polarkoordinaten. Beschreiben sie die Lösungskurven sowohl in den Polarkoordinaten r, φ als auch den kartesischen Koordinaten x, y.

- Für die Lösungskurven eines lokal lipschitzstetigen Vektorfeldes gilt genau eine der drei folgenden Möglichkeiten. Eine Lösungskurve $\varphi:I\to V$ ist
 - a. eine konstante Abbildung: $\varphi(t) = p$ für alle t, oder
 - b. eine injektive Immersion, oder
 - c. eine periodische Immersion: $\varphi(t+T)=\varphi(t)$ für ein T>0 und alle t. Hinweis: Eine Immersion ist eine differenzierbare Abbildung, deren Ableitung überall maximalen Rang hat.
- 73 *a.* Bestimmen sie $\int_{\gamma} y^3 dx + x^3 dy$ für

$$\gamma: [0,1] \to \mathbb{R}^2, \quad \gamma(t) = (t^{\alpha}, t), \quad \alpha \ge 1.$$

b. Bestimmen sie $\int_{Y} x_3 dx_1 + x_1 dx_2 + x_2 dx_3$ für

$$y: [0,1] \to \mathbb{R}^3, \quad y(t) = (\cos 2\pi t, \sin 2\pi t, t).$$

Zusatzaufgaben

54 Sei Φ der maximale Fluss eines lipschitzstetigen Vektorfeldes ν . Dann gilt

$$\Phi^t_* \nu = \nu$$

an allen Punkten, wo die linke Seite definiert ist.

Das Vektorfeld ν sei von der Form

$$v(x) = Ax + \hat{v}(x),$$

wobei $\hat{\ }$ bedeutet, dass der Term bis zur ersten Ableitung bei 0 verschwindet. Dann hat die Zeit-1-Abbildung $\Phi=\Phi^1$ seines Flusses die Form

$$\Phi(x) = \Lambda x + \hat{\Phi}(x)$$

mit $\Lambda = e^A$.

13.07.18

"Well, of course I did it in cold blood, you idiot! ...!'m a reptile!"