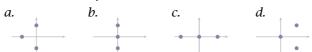
Ss 2021

08.07.2021


Votieraufgaben

- Klassifizieren und skizzieren sie alle Differenzialgleichungen $\dot{x} = Ax$ in der Ebene mit det A = 0.
- Schreiben Sie die allgemeine Lösung von

$$\dot{x} = Ax$$
, $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, $\lambda < 0$,

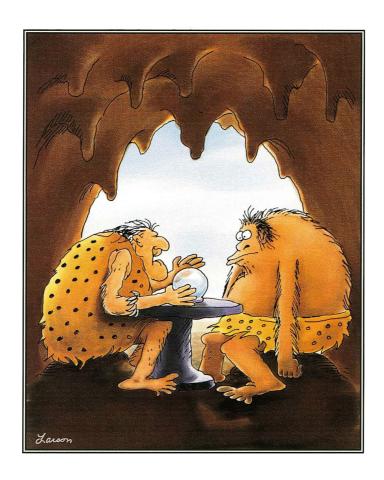
in der Form x = g(y) und skizzieren Sie diese Kurven.

Zeichnen sie die Phasenportraits für folgende Konfigurationen von Eigenwerten eines linearen Systems $\dot{x} = Ax$ im \mathbb{R}^3 .

4 Lösen sie das Anfangswertproblem $\dot{x} = Ax$, $x(0) = x_0$ für folgende A und x_0 .

a.
$$A = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$$
, $x_0 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ b. $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $x_0 = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$
c. $A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$, $x_0 = \begin{pmatrix} 3 \\ -9 \end{pmatrix}$

Betrachten sie die inhomogene n-dimensionale Differenzialgleichung $\dot{x}=Ax+b$ mit det $A\neq 0$. Bestimmen sie eine affine Transformation x=Py+c, die diese Gleichung in eine homogene Gleichung $\dot{y}=By$ transformiert. Bestimmen sie damit die allgemeine Lösung dieser Gleichung. Wie sieht diese Lösung aus, wenn det A=0?


Schriftaufgabe

6 Betrachten sie im \mathbb{R}^3 die Differenzialgleichung $\dot{x} = Ax$ mit

$$A = \begin{pmatrix} 1 \\ 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}.$$

- a. Zu welchem Diagonaloperator ist A ähnlich?
- b. Welche Struktur hat die allgemeine Lösung?
- c. Bestimmen sie die allgemeine Lösung explizit.
- *d.* Lösen sie damit das Anfangswertproblem mit $x(0) = (2,4,3)^{T}$.

Ss 2021

"I see your little, petrified skull ... labeled and resting on a shelf somewhere."