Abb 4 Addition von Kurven

Wegadditivität

Das Wegintegral $\int_{\omega} \alpha$ ist nicht nur linear bezüglich der Differenzialform α , sondern auch additiv bezüglich des Integrationsweges ω . Dazu definieren wir die Addition geeigneter Wege wie folgt. Seien ω_1 und ω_2 zwei Wege in V, wo der Endpunkt von ω_1 mit dem Anfangspunkt von ω_2 zusammenfällt, und

$$y_1: [a,b] \rightarrow V, \quad y_2: [c,d] \rightarrow V$$

zwei stetige Parametrisierungen dieser Wege. Dann ist $y_1(b) = y_2(c)$, und wir können das zweite Parameterintervall noch so verschieben, dass b=c. Dann definiert

$$\gamma_1 + \gamma_2 : [a,d] \to V, \quad (\gamma_1 + \gamma_2)(t) \coloneqq \begin{cases} \gamma_1(t), & a \le t \le b, \\ \gamma_2(t), & c \le t \le d, \end{cases}$$

eine stetige Kurve in V. Die zugehörige Äquivalenzklasse definieren wir als

$$\omega_1 + \omega_2 = [\gamma_1 + \gamma_2].$$

Man überlegt sich, dass diese Definition nicht von der Wahl der Parametrisierungen abhängt, denn zu y_1 und y_2 äquivalente Parametrisierungen führen zu einer zu y_1+y_2 äquivalenten Parametrisierung. Sind zudem ω_1 und ω_2 von der Klasse D^1 , so ist es auch $\omega_1+\omega_2^{-1}$.

Ist ferner $\omega = [\gamma]$ mit $\gamma \colon [a,b] \to V$, so definiert die in umgekehrter Richtung durchlaufene Kurve

$$\gamma_-$$
: $[a,b] \rightarrow V$, $\gamma_-(t) = \gamma(a+b-t)$

den umgekehrt durchlaufenen Weg

$$-\omega = [\gamma_{-}].$$

Rechenregeln Seien $\alpha: V \hookrightarrow V^*$ eine stetige 1-Form und $\omega, \omega_1, \omega_2$ stückweise stetig differenzierbare Wege im Definitionsbereich von α . Dann

¹ Dies ist übrigens einer der Vorteile, *stückweise* stetig differenzierbare Kurven zu betrachten.

gilt

$$\int_{-\omega} \alpha = -\int_{\omega} \alpha, \qquad \int_{\omega_1 + \omega_2} \alpha = \int_{\omega_1} \alpha + \int_{\omega_2} \alpha,$$

falls die Summe von ω_1 und ω_2 erklärt ist. Weiter gilt

$$\left| \int_{\omega} \alpha \right| \leq L(\omega) \max_{p \in \omega} \|\alpha(p)\|_{*},$$

wenn die Länge bezüglich einer Norm $\|\cdot\|$ auf V bestimmt wird und $\|\cdot\|_*$ die zugehörige induzierte Norm auf V^* bezeichnet. \rtimes

 $\langle \langle \langle \langle \rangle \rangle \rangle$ Wir beweisen nur die letzte Behauptung, der Rest ist Routine. Mit einer beliebigen Parametrisierung $\gamma \colon [a,b] \to V$ von ω gilt

$$\left| \int_{\omega} \alpha \right| = \left| \int_{a}^{b} \alpha(\gamma(t))\dot{\gamma}(t) \, \mathrm{d}t \right|$$

$$\leq \int_{a}^{b} |\alpha(\gamma(t))\dot{\gamma}(t)| \, \mathrm{d}t$$

$$\leq \int_{a}^{b} |\alpha(\gamma(t))|_{*} ||\dot{\gamma}(t)|| \, \mathrm{d}t$$

$$\leq \max_{p \in \omega} ||\alpha(p)||_{*} \int_{a}^{b} ||\dot{\gamma}(t)|| \, \mathrm{d}t.$$

Das letzte Integral ist gerade die Länge $L(\omega)$ von ω .

19.3

Wegintegrale exakter 1-Formen

Die explizite Bestimmung eines klassischen Integrals ist aufgrund des Hauptsatzes $_{10.16}$ gleichbedeutend mit dem Auffinden einer Stammfunktion. Entsprechendes gilt auch für Wegintegrale, wenn die betreffende 1-Form exakt ist.

Definition Eine 1-Form α heißt exakt, wenn es eine C^1 -Funktion f gibt, so dass

$$\alpha = df$$

auf dem gemeinsamen offenen Definitionsbereich. Jede solche Funktion f heißt eine Stammfunktion von α . \rtimes

▶ 1-Formen auf einem Intervall Ist $\alpha = a(x) dx$ stetig auf dem Intervall I und $x_0 \in I$, so definiert aufgrund des Stammfunktionensatzes $a_{10.14}$

$$f(x) = \int_{x_0}^x a(t) \, \mathrm{d}t, \qquad x \in I,$$

² Im Folgenden verwenden wir d*t* für das klassische Integral und d*x* für 1-Formen.

eine stetig differenzierbare Funktion f auf I mit der Eigenschaft, dass

$$df(x) = f'(x) dx = a(x) dx.$$

Somit ist *jede* auf einem Intervall stetige 1-Form exakt. ◀

ightharpoonup Zentralfeld auf $\mathbb{R}^n \setminus \{0\}$ Eine 1-Form der Gestalt

$$\alpha = \varphi(\|x\|) \sum_{k=1}^{n} x_k \, \mathrm{d}x_k$$

mit einer stetigen Funktion $\varphi:(0,\infty)\to\mathbb{R}$ ist exakt. Eine Stammfunktion f auf $\mathbb{R}^n\setminus\{0\}$ ist zum Beispiel gegeben durch

$$f(x) = F(||x||) = \int_{1}^{||x||} t\varphi(t) dt.$$

Denn für die euklidische Norm gilt

$$d(||x||) = \sum_{k=1}^{n} \frac{x_k}{||x||} dx_k, \quad x \neq 0,$$

und somit

$$df(x) = F'(\|x\|)d(\|x\|) = \varphi(\|x\|) \sum_{k=1}^{n} x_k dx_k.$$

Die Wegintegrale exakter 1-Formen sind nun leicht zu berechnen. Es gilt folgende Verallgemeinerung des Hauptsatzes $_{10.16}$.

Hauptsatz für Wegintegrale Ist die 1-Form α exakt mit Stammfunktion f, so gilt

$$\int_{\omega} \alpha = \int_{\omega} \mathrm{d}f = f \Big|_{\omega_a}^{\omega_b}$$

für jeden stückweise stetig differenzierbaren Weg ω im Definitionsbereich von α mit Anfangspunkt ω_a und Endpunkt ω_b . Das Wegintegral einer exakten 1-Form hängt also nur vom Anfangs- und Endpunkt des Weges ab, nicht aber von dessem Verlauf. \rtimes

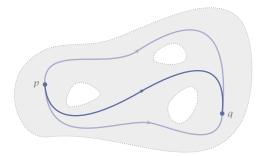
 $\langle \langle \langle \langle \langle \rangle \rangle \rangle$ Sei ω zunächst C^1 und $\gamma \colon [a,b] \to V$ eine C^1 -Parametrisierung von ω . Dann ist $f \circ \gamma$ ebenfalls stetig differenzierbar, und es gilt

$$\mathrm{d} f(\gamma(t))\dot{\gamma}(t) = Df(\gamma(t))\gamma'(t) = (f\circ\gamma)'(t).$$

Also ist

$$\int_{\omega} \alpha = \int_{\gamma} df = \int_{a}^{b} df(\gamma(t))\dot{\gamma}(t) dt$$
$$= \int_{a}^{b} (f \circ \gamma)'(t) dt = f \circ \gamma \Big|_{a}^{b} = f \Big|_{\gamma(a)}^{\gamma(b)} = f \Big|_{\omega_{b}}^{\omega_{b}}.$$

Abb 5 Verschiedene Wege von *p* nach *q*



Mit einer geeigneten Zerlegung in endlich viele Teilintervalle folgt die Behauptung dann auch für stückweise stetig differenzierbare Wege und deren Parametrisierungen.

Die Wegunabhängigkeit ist somit eine *notwendige* Bedingung für die Exaktheit einer 1-Form. Die 1-Form in Beispiel 4 und die Windungsform υ in Beispiel 5 können deshalb nicht exakt sein.

Wir werden gleich sehen, dass umgekehrt diese Bedingung auch *hinreichend* ist, solange wir nur solche Punkte betrachten, die wir auch durch Kurven verbinden können. Dies führt zum Begriff der *wegzusammenhängenden Menge*.

Definition Eine Teilmenge M von V heißt wegzusammenhängend, wenn es zu je zwei Punkten in M eine ganz in M verlaufende stückweise differenzierbare Kurve gibt, die diese Punkte verbindet. ⋊

- ▶ A. Jedes reelle Intervall ist wegzusammenhängend.
 - B. Jede konvexe Menge ist wegzusammenhängend.
 - c. $\mathbb{R}^n \setminus \{0\}$ ist zusammenhängend für $n \ge 2$, nicht aber für n = 1.
 - D. Nur die Menge rechts in Abbildung 6 ist wegzusammenhängend. \blacktriangleleft

Offene *und* wegzusammenhängende Mengen spielen eine wichtige Rolle in der Analysis und haben deshalb eine eigene Bezeichnung.

Abb 6 Zwei nicht und eine zusammenhängende offene Menge

Definition *Ein Gebiet ist eine nichtleere, offene und wegzusammenhängende Menge.* ⋈

- ▶ A. Jedes nichtleere offene Intervall ist ein Gebiet.
 - B. Jede nichtleere offene konvexe Menge ist ein Gebiet.
 - c. Die Menge $\Omega_{\varepsilon}=\{(u,v):v^2>u^2-\varepsilon\}$ ist nur für $\varepsilon>0$ ein Gebiet.
- D. Die Vereinigung zweier Gebiete ist wieder ein Gebiet genau dann, wenn ihr Durchschnitt nicht leer ist. ◀

Das nächste Lemma zeigt, dass hinsichtlich Stammfunktionen die Gebiete in höheren Dimensionen dieselbe Rolle spielen wie die Intervalle in einer Dimension.

- 8 **Lemma** Auf einem Gebiet Ω ist eine differenzierbare Abbildung $f: \Omega \to W$ konstant genau dann, wenn Df verschwindet. \rtimes
 - $\langle \langle \langle \langle \langle \rangle \rangle \rangle$ Das ist trivial, unabhängig davon, ob Ω ein Gebiet ist oder nicht.
 - \Leftarrow Fixiere einen Punkt $x_0 \in \Omega$ und betrachten einen weiteren Punkt $x \in \Omega$. Es existiert eine stückweise differenzierbare Kurve $\gamma: [a,b] \to \Omega$ mit

$$y(a) = x_0, \qquad y(b) = x.$$

Dann ist auch $g = f \circ y \colon [a,b] \to W$ stückweise differenzierbar. Da Df nach Voraussetzung überall verschwindet, gilt also auch stückweise

$$g'(t) = Df(\gamma(t))\gamma'(t) = 0.$$

Somit ist g sogar C^1 und wegen g'=0 auch konstant. Also ist g(a)=g(b), was gleichbedeutend ist mit $f(x)=f(x_0)$. Da $x\in\Omega$ beliebig war, ist f konstant auf ganz Ω .

Auf einem *Gebiet* ist eine differenzierbare Abbildung somit konstant genau dann, wenn ihre Ableitung überall verschwindet $_8$. Für eine skalare Funktion ist dies gleichbedeutend damit, dass ihr Differenzial verschwindet. Somit gilt folgendes

Korollar Auf einem Gebiet unterscheiden sich die Stammfunktionen einer exakten 1-Form nur durch eine additive Konstante. ⋊

Wir zeigen nun, dass auf einem Gebiet die Wegunabhängigkeit von 1-Form-Integralen auch *hinreichend* für die Exaktheit der 1-Form ist.

- Satz Sei α eine stetige 1-Form auf einem Gebiet Ω . Dann sind folgende Aussagen äquivalent.
 - (i) α ist exakt auf Ω .
 - (ii) Das Wegintegral von α ist unabhängig vom Verlauf des Weges.

(iii) Das Wegintegral von α verschwindet für jeden geschlossenen Weg. ×

 $\langle \langle \langle \langle \langle (i) \Rightarrow (ii) \rangle \rangle$ Das ist der Hauptsatz 7.

(ii) ⇒ (iii) Ein geschlossener Weg hat denselben Anfangs- und Endpunkt wie ein punktförmiger Weg. Das Wegintegral über einen Punktweg ist aber immer Null. Also gilt dies auch für beliebige geschlossene Wege.

(iii) \Rightarrow (ii) Seien ω_1 und ω_2 zwei D^1 -Wege in Ω mit gleichem Anfangs- und Endpunkt. Bilden wir einen neuen Weg χ , indem wir erst ω_1 und dann ω_2 in umgekehrter Richtung durchlaufen, so erhalten wir einen geschlossenen Weg, für den gilt:

$$0 = \int_{\chi} \alpha = \int_{\omega_1} \alpha - \int_{\omega_2} \alpha.$$

Das ist gleichbedeutend mit der Behauptung.

(ii) \Rightarrow (i) Dies ist der wesentliche Teil des Satzes. Da nach Voraussetzung jedes Wegintegral von α nur vom Anfangs- und Endpunkt abhängt, können wir eine Funktion $f:\Omega\to\mathbb{R}$ durch

$$f(x) \coloneqq \int_{x_0}^x \alpha$$

definieren, indem wir einen beliebigen Punkt $x_0 \in \Omega$ fixieren und das Integral über einen beliebigen Weg in Ω von x_0 nach x bilden. Zu zeigen ist, dass dies eine Stammfunktion von α definiert.

Betrachte $x \in \Omega$. Für alle hinreichend kleinen h liegt [x, x+h] ganz in Ω , und aufgrund der Wegunabhängigkeit des Integrals ist

$$f(x+h)-f(x)=\int_{x_0}^{x+h}\alpha-\int_{x_0}^x\alpha=\int_{[x,x+h]}\alpha.$$

Parametrisieren wir [x, x+h] durch $t\mapsto x+th$ mit $0\leq t\leq 1$, so folgt

$$f(x+h) - f(x) = \int_0^1 \alpha(x+th)h \, dt.$$

Subtrahieren wir $\alpha(x)h$, so erhalten wir

$$f(x+h) - f(x) - \alpha(x)h = \int_0^1 \left[\alpha(x+th) - \alpha(x)\right]h \,dt.$$

Aufgrund der Stetigkeit von α ist aber $[\alpha(x+th) - \alpha(x)]h = o(h)$, also

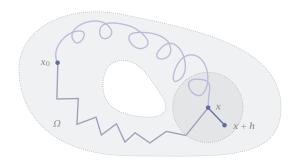
$$f(x+h)=f(x)+\alpha(x)h+o(h).$$

Somit ist f im Punkt x total differenzierbar, und es gilt

$$df(x)h = Df(x)h = \alpha(x)h$$
.

Somit ist $df = \alpha$, was zu zeigen war. \\\\\\

Abb 7
Definition von $\int_{-x}^{x} \alpha$



19.4

Lokal exakte 1-Formen

Der letzte Satz $_9$ charakterisiert exakte 1-Formen eindeutig über die Wegunabhängigkeit. Doch ist das Kriterium wenig praktikabel, da man nicht alle Wegintegrale überprüfen kann. Dagegen ist es leicht, eine *notwendige* Bedingung zu formulieren.

Integrabilitätsbedingung Ist eine 1-Form $\alpha = \sum_{k=1}^{n} a_k dx_k$ exakt und stetig differenzierbar, so erfüllen ihre Koeffizienten die Integrabilitätsbedingung

$$\partial_l a_k = \partial_k a_l, \quad 1 \leq k, l \leq n. \quad \times$$

Nach Voraussetzung ist

$$\alpha = \mathrm{d}f = \sum_{k=1}^{n} \partial_k f \, \mathrm{d}x_k$$

mit einer stetig differenzierbar Funktion f. Ist α stetig differenzierbar, so sind alle partiellen Ableitungen von f nochmals stetig differenzierbar. Somit ist f sogar C^2 , und mit dem Lemma von Schwarz $_{14.18}$ gilt

$$\partial_l a_k = \partial_l (\partial_k f) = \partial_k (\partial_l f) = \partial_k a_l, \qquad 1 \le k, l \le n.$$

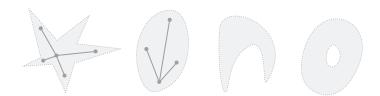
Definition Eine stetig differenzierbare 1-Form heißt geschlossen, wenn sie die Integrabilitätsbedingungen $_{10}$ erfüllt. \rtimes

Korollar *Jede stetig differenzierbare exakte 1-Form ist geschlossen.* ×

- 11 \Rightarrow A. Auf dem \mathbb{R}^2 ist $u \, dx + v \, dy$ geschlossen, falls $\partial_y u = \partial_x v$.
 - B. Somit ist $y^2 dx + dy$ nicht geschlossen, da $\partial_v(y^2) = 2y \neq 0 = \partial_x(1)$.
 - c. Die Windungsform v_5 ist geschlossen, denn

$$\partial_x \left(\frac{-x}{x^2 + y^2} \right) = \frac{x^2 - y^2}{(x^2 + y^2)^2} = \partial_y \left(\frac{y}{x^2 + y^2} \right).$$

Abb 8 Sternförmige und nicht sternförmige Mengen



D. Auf dem \mathbb{R}^3 ist $\alpha = u \, dx + v \, dy + w \, dz$ geschlossen, falls

$$\partial_{\nu}w = \partial_{z}\nu$$
, $\partial_{z}u = \partial_{x}w$, $\partial_{x}v = \partial_{\nu}u$.

Dies ist äquivalent zu

$$\nabla \times \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \times \begin{pmatrix} u \\ v \\ w \end{pmatrix} =: \begin{pmatrix} w_y - v_z \\ u_z - w_x \\ v_x - u_y \end{pmatrix} = 0.$$

Man nennt dies auch die *Rotation* des Vektorfelds $(u, v, w)^{T}$.

Das Lemma von Poincaré

Die Frage stellt sich, ob umgekehrt jede geschlossene 1-Form exakt ist. Die Antwort hierauf hat einen lokalen und einen globalen Aspekt. Lokal ist dies immer der Fall, wenn das Definitionsgebiet folgende geometrische Gestalt hat.

Definition Eine Teilmenge M des \mathbb{R}^n heißt sternförmig, wenn es einen Punkt $m \in M$ gibt, so dass $[m,x] \subset M$ für alle $x \in M$. Jeder solche Punkt m heißt ein Zentrum von M. \bowtie

Jede sternförmige Menge ist wegzusammenhängend, aber natürlich ist nicht jede wegzusammenhängende Menge sternförmig – siehe Abbildung 8.

- ▶ A. Jedes Intervall ist sternförmig bezüglich jedes seiner Punkte.
 - B. Die geschlitzte Ebene $\mathbb{R}^2 \setminus (0, \infty)$ ist sternförmig mit Zentrum 0.
 - c. Die gepunktete Ebene $\mathbb{R}^2 \setminus \{0\}$ ist *nicht* sternförmig.
 - D. Die Sphären \mathbb{S}^n , $n \ge 0$, sind *nicht* sternförmig.
- E. Eine Menge ist sternförmig bezüglich jedes ihrer Punkte genau dann, wenn sie konvex ist. \blacktriangleleft
- 12 **Lemma von Poincaré** Jede geschlossene 1-Form auf einem sternförmigen Gebiet ist exakt. ⋈

Zunächst eine Vorüberlegung. Falls $\alpha = df$, also

$$\alpha(x) = \sum_{k=1}^{n} a_k(x) dx_k = \sum_{k=1}^{n} \partial_k f(x) dx_k,$$

so gilt auch

$$\alpha(tx)x = \sum_{k=1}^n a_k(tx)x_k = \sum_{k=1}^n \partial_k f(tx)x_k = \partial_t f(tx).$$

Somit können wir f aus α rekonstruieren, indem wir $\alpha(tx)x$ über [0,1] integrieren. Diese Beobachtung ist die Grundlage des folgendes Beweises.