Analysis II 10.6.2015

Def: Seien V, W \mathbb{R} -Vektorräume. Eine Abbildung $L: V \to W$ heißt **linear**, falls

$$\forall x, y \in V \ \forall \alpha, \beta \in \mathbb{R} : L(\alpha x + \beta y) = \alpha L(x) + \beta L(y).$$

Satz: Sei $L:V \to W$ linear. Dann gilt

$$\forall x_0 \in V : L \text{ ist stetig in } x_0$$

 $\Leftrightarrow L \text{ ist stetig in } x_0 = 0$

Def: Eine lineare Abbildung $L:V\to W$ heißt **beschränkt**, falls

$$\exists c > 0 \ \forall x \in V : ||L(x)||_W \le c||x||_V.$$

Stetig = **Beschränkt**: Für eine lineare Abbildung $L: V \to W$ sind äquivalent

- (i) L ist stetig.
- (ii) L ist beschränkt.