M.Sc. Jan Köllner FB Mathematik, Universität Stuttgart

Analysis III (WS 2015/16) — Blatt 35

35.1. Finden Sie für folgende Abbildungen die Potenzreihendarstellung im Entwicklungspunkt $z_0 = 0$:

(a)
$$z \mapsto \frac{1}{1+z}$$
, (b) $z \mapsto \frac{1}{1-z^2}$, (c) $z \mapsto \frac{1}{z-2}$, (d) $z \mapsto \frac{1}{(z-1)(z-2)}$.

(*Hinweis:* Verwenden Sie die Geometrische Reihe.)

35.2. Finden Sie die Potenzreihedarstellung der Funktion

$$f: \mathbb{C} \setminus \{\pm i\} \to \mathbb{C}, \qquad z \mapsto \frac{1}{1+z^2}$$

in den Entwicklungspunkten

(a)
$$z_0 = 1$$
, (b) $z_0 = 1 + 3i$, (c) $z_0 = -4i$, (d) $z_0 = -1 - i$.

Berechnen Sie auch die zugehörigen Konvergenzradien und skizzieren Sie die Konvergenzkreise in der komplexen Ebene. Was fällt auf?

35.3. Die Funktion

$$f: \mathbb{C} \setminus \{1+\mathrm{i}, -4\}, \qquad z \mapsto \frac{\sin z}{(z-1-\mathrm{i})^2(z+4)}$$

soll in $z_0 \in \mathbb{C} \setminus \{1+i, -4\}$ in eine Potenzreihe entwickelt werden. Bestimmen Sie die Konvergenzradien und begründen Sie Ihre Antwort.