Höhere Analysis (SS 2016) — Blatt 3

In my opinion a mathematician, in so far as he is a mathematician, need not preoccupy himself with philosophy? An opinion, moreover, which has been expressed by many philosophers.

Henri-Léon Lebesque; (1875-1941)

Aufgaben zur schriftlichen Abgabe in der Übung

- **3.1.** (4 Punkte) Seien $f_n: X \to \mathbb{R}, n \in \mathbb{N}$, messbare Funktionen. Zeigen Sie:
 - (a) Falls $f_n \nearrow f(n \to \infty)$ und ein $\varphi \in \mathcal{L}(X)$ existiert mit $f_n \ge -\varphi$ für alle $n \in \mathbb{N}$, dann gilt

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

(b) Falls $f_n \searrow f(n \to \infty)$ und ein $\varphi \in \mathcal{L}(X)$ existiert mit $f_n \leq \varphi$ für alle $n \in \mathbb{N}$, dann gilt

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

- **3.2.** (4 Punkte) Zeigen Sie:
 - (a) Es sei (Ω, Σ, μ) ein Maßraum und $f \in \mathcal{L}(\Omega, \Sigma, \mu)$ und sei $A_i \in \Sigma$ für alle $i \in \mathbb{N}$, so dass $\bigcup_{n \in \mathbb{N}} A_n = \Omega$ und $A_i \cap A_k = \emptyset$ für $i \neq j$ gelte. Zeigen Sie, dass

$$\int_{\Omega} f d\mu = \sum_{j=1}^{\infty} \int_{A_i} f d\mu.$$

(b) Sei a > 1 und $f: \Omega \to \mathbb{R}$ Borel-messbar, so ist f genau dann integrierbar, wenn

$$\sum_{n \in \mathbb{Z}} a^n \mu(\{a^n \le |f| < a^{n+1}\}) < \infty.$$

Votieraufgaben

- **3.3.** Es sei (Ω, Σ, μ) ein Maßraum und $\{f_n\}_{n\in\mathbb{N}}\in\mathcal{L}(\Omega, \Sigma, \mu)$ eine Folge von Funktionen die gegen f gleichmäßig konvergieren. Zeigen Sie, falls $\mu(\Omega)<\infty$ gilt, folgt $\lim_{n\to\infty}\int_{\Omega}|f_n-f|d\mu=0$. Gilt das noch falls $\mu(\Omega)=\infty$?
- **3.4.** Es sei (Ω, Σ, μ) ein Maßraum.
 - (a) Seien $g_n:(\Omega,\Sigma)\to [0,\infty)$ messbar für alle $n\in\mathbb{N}$ und $\sum_{n=1}^\infty \int_\Omega g_n d\mu<\infty$. Zeigen Sie, dass $\sum_{n=1}^\infty g_n(x)$ fast überall beschränkt auf Ω ist.

(b) Sei $\{q_n\}_{n\in\mathbb{N}}$ eine Folge rationaler Zahlen aus]0,1[. Beweisen Sie, dass die Funktion

$$f(x) := \sum_{n=1}^{\infty} \frac{2^{-n}}{\sqrt{|x - q_n|}}$$

für fast alle $x \in]0,1[$ endlich ist und dass $f \in \mathcal{L}^1(]0,1[,\mathcal{B}(]0,1[),\mu^{(1)})$ ist.

3.5. Es sei (Ω, Σ, μ) ein Maßraum. Sei $f: (\Omega, \Sigma, \mu) \to \mathbb{C}$ eine komplexwertige Funktion, f heißt Lebesgue-integrierbar, falls Ref und Imf Lebesgue-integrierbar sind. Das Lebesgue-Integral von f ist dann definiert durch

$$\int_{\Omega} f d\mu := \int_{\Omega} (Ref) d\mu + \mathrm{i} \int_{\Omega} (Imf) d\mu$$

Zeigen Sie:

- (a) f ist messbar, genau dann wenn Ref und Imf messbar sind.
- (b) f ist Lebesgue-integrierbar, genau dann wenn f messbar und |f| Lebesgue-integrierbar ist.

Zusatzaufgaben

3.6. Es sei μ ein diskretes Maß auf dem messbarer Raum $(\mathbb{R}, \mathcal{P}(\mathbb{N}))$, welches sich auf \mathbb{N} konzentriert, d.h. $\mu(\mathbb{R} \setminus \mathbb{N}) = 0$. Zeigen Sie

$$\int_{[0,\infty)} x d\mu = \sum_{n=1}^{\infty} \mu([n,\infty]).$$

Hinweis: Verwenden Sie eine geeignete Approximation der Identität durch einfache Funktionen.