Nicole Gauß M.Sc., Daniela Maier M.Sc.

Gruppenübung 1 (Ferienblatt)

Aufgabe 1 (Stetigkeit I)

a) Für welche $a \in \mathbb{R}$ ist die Funktion $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x^2 + 3, & x \ge 1, \\ a(x^3 - 5), & x < 1, \end{cases}$$

stetig? Und für welche $a \in \mathbb{R}$ ist f stetig differenzierbar?

b) Untersuchen sie, für welche $x \in \mathbb{R}$, in denen die Funktion

$$g(x) = \frac{x^3 + 3x^2 - x - 3}{x^2 + x - 6} + \frac{(2x - 6)^2}{x^2 - 6x + 9},$$

nicht definiert ist, man g durch Zuweisung reeller Funktionswerte stetig fortsetzen kann. Bestimmen Sie gegebenfalls diese Funktionswerte.

c) Sei $h: \mathbb{R} \to \mathbb{R}$ gegeben durch $h(x) = x^3 - 3x - 1$. Zeigen Sie, dass die Funktion h im Intervall [1, 2] genau eine Nullstelle besitzt.

Hinweis: Verwenden Sie den Zwischenwertsatz und den Satz von Rolle.

Aufgabe 2 (Stetigkeit II)

- a) Sei $g: \mathbb{R} \to \mathbb{R}$ stetig in $x \in \mathbb{R}$ und es sei g(x) > 0. Beweisen Sie, dass es ein offenes Intervall $I \subset \mathbb{R}$ gibt mit $x \in I$, so dass g(y) > 0 für alle $y \in I$.
- b) Bestimmen Sie die folgenden Grenzwerte:

$$\lim_{n \to \infty} \sqrt[n]{1+n}, \qquad \lim_{n \to \infty} \left(\frac{2+n}{n}\right)^n.$$

Hinweis: Verwenden Sie, dass $y = e^{\ln(y)}$ für alle y > 0 gilt und dass die Exponentialfunktion $h(x) = e^x$ stetig ist.

Aufgabe 3 (Extremalprobleme)

Beweisen oder widerlegen Sie die folgenden Aussagen.

- a) Stetige Funktionen nehmen auf beschränkten, offenen Intervallen stets ein lokales Maximum oder Minimum an.
- b) Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und gerade, d.h. es gilt f(x) = f(-x) für alle $x \in \mathbb{R}$. Dann nimmt f ein lokales Minimum oder Maximum an.
- c) Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und gerade. Dann nimmt f ein globales Minimum oder Maximum an.

1 Termin: 13.04.2018

Aufgabe 4 (Funktionenfolgen)

Betrachten Sie die Folge von Funktionen $f_n \colon \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \frac{x}{1 + n^2 x^2}, \qquad n \in \mathbb{N}.$$

- a) Bestimmen Sie Art (lokal oder global) und Lage der Extrema von f_n für alle $n \in \mathbb{N}$. Hinweis: Berechnen Sie $\lim_{x \to \infty} f_n(x)$ und $\lim_{x \to -\infty} f_n(x)$.
- b) Konvergiert die Folge $(f_n)_{n\in\mathbb{N}}$ punktweise oder sogar gleichmäßig? Begründen Sie Ihre Antwort.

Hinweis: Verwenden Sie Teilaufgabe a).

Aufgabe 5 [Schriftliche Aufgabe 6 Punkte]

- a) Sei I = [0, 1] und $F: I \to I$ stetig. Zeigen Sie mithilfe des Zwischenwertsatzes, dass F einen Fixpunkt in I hat, das heißt, dass ein $x^* \in I$ existiert mit $F(x^*) = x^*$. Hinweis: Betrachten Sie die Hilfsfunktion $h: I \to \mathbb{R}$, h(x) = F(x) - x.
- b) Gegeben sei die Funktion $g(x) = x\sqrt{16 x^2}$.
 - i) Für welche $x \in \mathbb{R}$ ist g definiert?
 - ii) Untersuchen Sie g auf Nullstellen, Extrema und Wendepunkte. Bestimmen Sie Art und Lage der Extrema.
 - iii) Skizzieren Sie den Graphen der Funktion g.
- c) Betrachten Sie die Folge von Funktionen $f_n: [0,1] \to \mathbb{R}$,

$$f_n(x) = x^n, \qquad n \in \mathbb{N}.$$

Begründen Sie, ob die Folge $(f_n)_{n\in\mathbb{N}}$ punktweise oder sogar gleichmäßig konvergiert? Bestimmen Sie gegebenfalls die Grenzfunktion.

2 Termin: 13.04.2018