Höhere Mathematik I WS 2017/18 für el, kyb, mecha, phys

Prof. Dr. G. Schneider, Dr. B. de Rijk, Nicole Gauß M.Sc., Daniela Maier M.Sc.

Gruppenübung 13

Aufgabe 1 (Absolut konvergente Reihen)

Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge. Beweisen oder widerlegen Sie die folgenden Aussagen.

- a) Ist $\sum_{n=1}^{\infty} |a_n|^2$ konvergent, dann konvergiert $\sum_{n=1}^{\infty} |a_n|$.
- b) Ist $\sum_{n=1}^{\infty} |a_n|$ konvergent, dann konvergiert $\sum_{n=1}^{\infty} |a_n|^2$.
- c) Ist $\sum_{n=1}^{\infty} a_n$ konvergent, dann konvergiert $\sum_{n=1}^{\infty} |a_n|^2$.

Aufgabe 2 (Taylorreihen)

a) Bestimmen Sie die Taylorreihe von $f(x) = e^{x^2}$ um $x_0 = 0$ und ermitteln Sie ihren Konvergenzradius.

Hinweis: Verwenden Sie die Taylorreihe von $g(x) = e^x$.

b) Bestimmen Sie die Taylorreihe von

$$h(x) = \frac{1}{2+x},$$

um $x_0 = 1$ und ermitteln Sie ihren Konvergenzradius.

Hinweis: Verwenden Sie die geometrische Reihe.

c) Bestimmen Sie die Taylorreihe von

$$k(x) = \frac{x}{(1-x)^2},$$

um $x_0 = 0$ durch gliedweise Differentiation einer geeigneten Potenzreihe. Geben Sie das größtmögliche offene Intervall $(a,b) \subset \mathbb{R}$ an, auf dem die von Ihnen gefundene Reihe k tatsächlich darstellt.

Aufgabe 3 (Konvergenzradius)

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen.

a)
$$\sum_{n=1}^{\infty} \frac{n^4 - 4n^3}{n^3 + n^2} x^n$$

b)
$$\sum_{n=0}^{\infty} \frac{4}{(n+1)!} x^n$$

a)
$$\sum_{n=1}^{\infty} \frac{n^4 - 4n^3}{n^3 + n^2} x^n$$
 b) $\sum_{n=0}^{\infty} \frac{4}{(n+1)!} x^n$ c) $\sum_{n=0}^{\infty} (4 + (-1)^n)^{-3n} x^{5n}$

1 Termin: 05.02.2018

Aufgabe 4 (Potenzreihen I)

Für welche $x \in \mathbb{R}$ konvergieren die folgenden Reihen?

a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}} x^n.$$

b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n2^{n+1} - 2^n}$$

Aufgabe 5 (Potenzreihen II)

Für welche $x \in \mathbb{R}$ konvergieren die folgenden Reihen?

a)
$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{n}\right)^n \left(\frac{x}{1+x}\right)^n$$

b)
$$\sum_{n=0}^{\infty} \frac{(3x-2)^n}{5^n(n+1)\sqrt{n+3}}$$

2 Termin: 05.02.2018