Name, Vorname: Matrikel-Nummer: Studiengang:

Aufgabe	1	2	3	4	5	6	7	8	Summe
Punkte	/1	/4	/2	/3	/8	/3	/3	/7	/31

Bitte beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Es wird nur die Angabe von Endergebnissen verlangt.

 Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Werte der Winkelfunktionen könnten hilfreich sein:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

1

Viel Erfolg!

Aufgabe 1 (1 Punkt) Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an.

Name des Tutors/der Tutorin:

Gruppennr.:

Aufgabe 2 (4 Punkte) Bestimmen Sie die Spur folgender Matrix:

$$A = \frac{1}{2} \begin{pmatrix} \sqrt{2} & 0 & -\sqrt{2} \\ 0 & 2 & 0 \\ \sqrt{2} & 0 & \sqrt{2} \end{pmatrix}, \quad \operatorname{Sp}(A) = \boxed{1 + \sqrt{2}}.$$

Die Abbildung $\alpha \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon x \mapsto Ax$ beschreibt eine Drehung. Bestimmen Sie die Drehachse g und den Drehwinkel φ von α , sowie die Determinante von A:

$$g = \begin{bmatrix} L \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} & , \quad \varphi = \begin{bmatrix} \frac{\pi}{4} & 1 \\ \frac{\pi}{4} & 1 \end{bmatrix}$$

,
$$\varphi = \boxed{ \frac{\pi}{4} \text{ bzw. } \frac{7\pi}{4} }$$
 , $\det(A) = \boxed{ }$

Aufgabe 3 (2 Punkte)

Gegeben sei \mathbb{R}^3 mit Standardkoordinatensystem $\mathbb{E} = (0; e_1, e_2, e_3)$. Darin sind die Punkte P_0 , P_1 , P_2 und P_3 gegeben durch:

$$_{\mathbb{E}}P_0 = (2,3,4)^{\mathsf{T}}, \ _{\mathbb{E}}P_1 = (2,2,3)^{\mathsf{T}}, \ _{\mathbb{E}}P_2 = (0,3,1)^{\mathsf{T}}, \ _{\mathbb{E}}P_3 = (1,3,1)^{\mathsf{T}}.$$

Gesucht ist nun ein zweites Koordinatensystem \mathbb{F} mit

$$_{\mathbb{F}}P_0 = (0,0,0)^{\mathsf{T}}, \ _{\mathbb{F}}P_1 = (1,0,0)^{\mathsf{T}}, \ _{\mathbb{F}}P_2 = (0,1,0)^{\mathsf{T}}, \ _{\mathbb{F}}P_3 = (0,0,1)^{\mathsf{T}}.$$

Geben Sie das Koordinatensystem \mathbb{F} an:

$$\mathbb{F} = \left(\begin{array}{c|c} 2\\3\\4 \end{array} \right); \left(\begin{array}{c}0\\-1\\-1 \end{array} \right), \left(\begin{array}{c}-2\\0\\-3 \end{array} \right), \left(\begin{array}{c}-1\\0\\-3 \end{array} \right) \right)$$

Aufgabe 4 (3 Punkte)

Gegeben sei die vom Parameter $\alpha \in \mathbb{R}$ abhängige Quadrik

$$Q_{\alpha} = \{ x \in \mathbb{R}^3 | 2x_1^2 - (2 - \alpha)x_2^2 - 3x_3^2 + 1 = 0 \}$$

und die Ebene $E = \{x \in \mathbb{R}^3 | x_1 = 0\}$. Geben Sie, falls möglich, ein $\alpha \in \mathbb{R}$ so an, dass der Schnitt $Q_{\alpha} \cap E$ die jeweils angegebene Gestalt hat. Falls dies nicht möglich ist, so tragen Sie "existiert nicht" in das Kästchen ein.

(a) $Q_{\alpha} \cap E$ ist ein Kreis.

$$\alpha = -1$$

(b) $Q_{\alpha} \cap E$ ist ein schneidendes Geradenpaar.

existiert nicht

(c) $Q_{\alpha} \cap E$ ist ein paralleles Geradenpaar.

 $\alpha = 2$

Aufgabe 5 (8 Punkte) Gegeben ist die Quadrik

$$Q = \left\{ x \in \mathbb{R}^2 \mid 3x_1^2 - 5x_2^2 + 6x_1x_2 + 6 = 0 \right\}.$$

Geben Sie A, a und c für die Matrixbeschreibung $x^{\mathsf{T}}Ax + 2a^{\mathsf{T}}x + c = 0$ von Q an:

$$A = \begin{bmatrix} 3 & 3 \\ 3 & -5 \end{bmatrix} , \quad a = \begin{bmatrix} 0 \\ 0 \end{bmatrix} , \quad c = \begin{bmatrix} 6 \\ 0 \end{bmatrix} .$$

Bestimmen Sie eine euklidische Normalform von Q sowie ein kartesisches Koordinatensystem, in dem Q diese Normalform hat, und geben Sie die Gestalt von Q an:

Euklidische Normalform

$$\frac{2}{3}y_1^2 - y_2^2 + 1 = 0$$

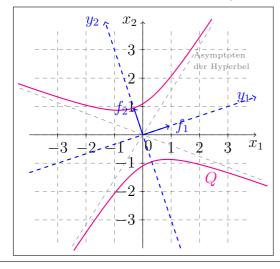
Koordinatensystem

$$\left(\begin{pmatrix}0\\0\end{pmatrix}; \frac{1}{\sqrt{10}}\begin{pmatrix}3\\1\end{pmatrix}, \frac{1}{\sqrt{10}}\begin{pmatrix}-1\\3\end{pmatrix}\right)$$

Gestalt

Hyperbel

Skizzieren Sie das neue Koordinatensystem samt der Quadrik $\mathcal Q$ im Standardkoordinatensystem.



Aufgabe 6 (3 Punkte) Die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ sind gegeben durch

$$a_n := 6 + \frac{1}{n} + 2\sin\left(\frac{n\pi}{2}\right)$$
 und $b_n := \frac{(3n+3)(n+2)}{n^2 + 4n + 4}$.

- (a) Bestimmen Sie eine reelle obere Schranke für $(a_n)_{n\in\mathbb{N}}$:
- (b) Bestimmen Sie eine reelle untere Schranke für $(b_n)_{n\in\mathbb{N}}$: 2
- (c) Geben Sie eine reelle Zahl an, die sowohl eine untere Schranke für $(a_n)_{n\in\mathbb{N}}$ als auch eine obere Schranke für $(b_n)_{n\in\mathbb{N}}$ ist: 4

Aufgabe 7 (3 Punkte)

Untersuchen Sie die Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ auf Monotonie, Beschränktheit, Konvergenz und bestimmen Sie den kleinsten Häufungspunkt. Tragen Sie für die Monotonie, Beschränktheit und Konvergenz entweder **Ja** oder **Nein**, sowie den <u>lim</u> der Folgen, in die Kästen ein.

	Monoton	Beschränkt	Konvergent	$\lim_{n \to \infty}$
$a_n = -5 + 4^{-5n}$	Ja	Ja	Ja	-5
$b_n = 3 + (-1)^n$	Nein	Ja	Nein	2
$c_n = (-1)^n (2n+8)$	Nein	Nein	Nein	$-\infty$

Aufgabe 8 (7 Punkte) Für $a \in \mathbb{R}$ ist die Matrix $A_a = \begin{pmatrix} 2 & a \\ 2 & 4 \end{pmatrix}$ gegeben.

(a) Geben Sie das charakteristische Polynom von A_a an:

$$\chi_{A_a}(\lambda) = \lambda^2 - 6\lambda - 2a + 8$$

(b) Finden Sie a so, dass $v = (3, -2)^{\mathsf{T}}$ ein Eigenvektor von A_a ist:

$$a = \boxed{3/2}$$

(c) Geben Sie die Eigenwerte $\lambda_1,\lambda_2\in\mathbb{C}$ von A_{-5} an:

$$\lambda_1 = \boxed{ \qquad \qquad 3 - 3i \qquad }, \qquad \lambda_2 = \boxed{ \qquad \qquad 3 + 3i \qquad }.$$

(d) Für welchen Wert des Parameters a besitzt A_a nur einen Eigenwert λ ? Geben Sie a, λ und den zugehörigen Eigenraum $V(\lambda)$ an:

$$a = \boxed{ -1/2 }$$
, $\lambda = \boxed{ 3 }$, $V(\lambda) = \boxed{ L\left(\begin{pmatrix} -1\\2 \end{pmatrix}\right) }$.

(e) Für welche Parameter a lässt sich die Matrix A_a diagonalisieren?

$$a \neq -1/2$$