Aufgabe 7 (3 Punkte)

Skizzieren Sie die Mengen

\[M_1 := \left\{ \sqrt{3} + i, (\sqrt{3} + i)^3 \right\}, \quad M_2 := \left\{ z \in \mathbb{C} \mid |z + 4 - 3i| < 2 \right\} \]

in der komplexen Zahlenebene, in der die Punkte \(\pm \sqrt{3} \) und \(\pm \sqrt{3}i \) bereits eingezeichnet sind.

Der Rand von \(M_2 \) gehört nicht dazu.

Aufgabe 8 (6 Punkte)

Gegeben sei die Matrix \(A \in \mathbb{C}^{4 \times 4} \) mit

\[
A = \begin{pmatrix}
 i & 2i & 0 & 0 \\
 -3i & -4i & 0 & 0 \\
 0 & 0 & -4 & -3 \\
 0 & 0 & 6 & 5
\end{pmatrix}.
\]

Geben Sie alle Ergebnisse in der Form \(a + bi \) mit \(a, b \in \mathbb{R} \) an.

(a) Geben Sie die Determinante und die Spur von \(A \) an.

\[\det(A) = 4 \quad \text{Sp}(A) = 1 - 3i \]

(b) Bestimmen Sie die Eigenwerte \(\lambda_j \) und je einen zugehörigen Eigenvektor \(v_j \) für \(j \in \{1, 2, 3, 4\} \).

\[
\lambda_1 = -2i, \quad \lambda_2 = -i, \quad \lambda_3 = -1, \quad \lambda_4 = 2
\]

\[
v_1 = \begin{pmatrix}
 -2 \\
 3 \\
 0 \\
 0
\end{pmatrix}, \quad v_2 = \begin{pmatrix}
 -1 \\
 1 \\
 1 \\
 0
\end{pmatrix}, \quad v_3 = \begin{pmatrix}
 0 \\
 0 \\
 -1 \\
 1
\end{pmatrix}, \quad v_4 = \begin{pmatrix}
 0 \\
 0 \\
 -1 \\
 2
\end{pmatrix}
\]

Viel Erfolg!

+1000/1/60+

Schein Klausur H"ohere Mathematik 1 18. 7. 2017

Beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Werte der Winkelfunktionen könnten hilfreich sein:

\[
\sin(x) \begin{pmatrix} \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} \end{pmatrix} \quad \cos(x) \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} & 0 \end{pmatrix}
\]

Viel Erfolg!
Aufgabe 2 (7 Punkte)
Es sei $\text{Pol}_2 \mathbb{R}$ der Vektorraum der reellen Polynome vom Grad höchstens 2 mit den Basen $B : 1, X, X^2$ und $C : 1, -X, 2 + X^2$.

Weiterhin soll die lineare Abbildung $\varphi : \text{Pol}_2 \mathbb{R} \to \text{Pol}_2 \mathbb{R}$ durch $\varphi (X - 1) = -2 - 7X, \varphi (-2X^2 + 3X) = -8 - 7X - 6X^2$.

(a) Bestimmen Sie:

\[
\begin{align*}
\varphi(1) &= 2X, & \varphi(X) &= -2 - 5X, \\
\varphi(X^2) &= 1 - 4X + 3X^2, & \varphi(2 + X^2) &= 1 + 3X^2.
\end{align*}
\]

(b) Bestimmen Sie B^{φ}_B, C^{φ}_C und g^{id}_c:

\[
B^{\varphi}_B = \begin{bmatrix} 0 & -2 & 1 \\ 2 & -5 & 4 \\ 0 & 0 & 3 \end{bmatrix} \quad C^{\varphi}_C = \begin{bmatrix} 0 & 2 & -5 \\ -2 & -5 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad g^{\text{id}}_c = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

Aufgabe 3 (3 Punkte)
Gegeben das Koordinatensystem $F = \begin{pmatrix} 0 \\ 1 \\ -3 \\ 1 \end{pmatrix}$ und die Gerade g durch die Gleichung $x_2 = 3x_1$. Bestimmen Sie die Koordinatentransformationen $g^{\varphi}_B : y^B \mapsto y^G + Q$ und $g^{\beta}_g : y^B \mapsto y^G$ sowie die Abbildung $\varphi : \text{Pol}_2 \mathbb{R} \to \text{Pol}_2 \mathbb{R}$, wobei β die Spiegelung an der Geraden g bezeichnet, und geben Sie die folgenden Matrizen an.

\[
F = \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}, \quad G = \frac{1}{10} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

Aufgabe 4 (4 Punkte)
Bestimmen Sie die folgenden Grenzwerte. Tragen Sie „divergent“ ein, falls kein Grenzwert existiert.

\[
\begin{align*}
\lim_{n \to \infty} \frac{(-3)^n}{2^n} &= \text{divergent}, & \lim_{n \to \infty} \frac{(-1)^n}{2n + 3} &= \frac{1}{3}, \\
\lim_{n \to \infty} \frac{3}{2} &= \frac{3}{2}, & \lim_{n \to \infty} 5^{-n} &= \text{divergent}.
\end{align*}
\]

Aufgabe 5 (3 Punkte)
Gegeben ist das Koordinatensystem $F = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$.

Bestimmen Sie die Koordinatentransformation von Standard- auf F-Koordinaten und umgekehrt.

\[
x^B_F(x^F) = \begin{pmatrix} -2 \\ 5 \\ -1 \\ 2 \end{pmatrix}, \quad x^F_B(x^F) = \begin{pmatrix} 2 \\ -5 \\ 1 \\ -2 \end{pmatrix}.
\]

Aufgabe 6 (4 Punkte)
Gegeben ist bezüglich des Standardkoordinatensystems E die Quadrik $Q = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid 2x_1^2 - 16x_1 + x_2 + 33 = 0$.

Bestimmen Sie ein kartesisches Koordinatensystem F, in dem die Gleichung der Quadrik euklidische Normalform hat. Geben Sie diese Normalform sowie F und t für die Koordinatentransformation $g^{\varphi}_F : y^F \mapsto y^G + t$ an. Skizzieren Sie das Koordinatensystem F sowie die Quadrik im Standardkoordinatensystem.

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid 4x_1^2 + 2x_2 = 0 \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad t = \begin{pmatrix} 4 \\ -1 \end{pmatrix}.
\]
Aufgabe 7 (3 Punkte)

Skizzieren Sie die Mengen

\[M_1 := \{ 1 + \sqrt{3}i, (1 + \sqrt{3}i)^3 \}, \quad M_2 := \{ z \in \mathbb{C} \mid |z + 6 - 4i| < 2 \} \]

in der komplexen Zahlenebene, in der die Punkte \(\pm \sqrt{3} \) und \(\pm \sqrt{3}i \) bereits eingezeichnet sind.

Der Rand von \(M_2 \) gehört nicht dazu.

Aufgabe 8 (6 Punkte)

Gegeben sei die Matrix \(A \in \mathbb{C}^{4 \times 4} \) mit

\[A = \begin{pmatrix} -5i & -3i & 0 & 0 \\ 6i & 4i & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -3 & -4 \end{pmatrix}. \]

Geben Sie alle Ergebnisse in der Form \(a + bi \) mit \(a, b \in \mathbb{R} \) an.

(a) Geben Sie die Spur und die Determinante von \(A \) an.

\[\text{Sp} (A) = \begin{pmatrix} -3 - i \end{pmatrix} \quad \text{det} (A) = 4 \]

(b) Bestimmen Sie die Eigenwerte \(\lambda_j \) und je einen zugehörigen Eigenvektor \(v_j \) für \(j \in \{1, 2, 3, 4\} \).

\[\lambda_1 = \begin{pmatrix} -2i \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} i \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} -2 \end{pmatrix} \quad \lambda_4 = \begin{pmatrix} -1 \end{pmatrix} \]

\[v_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} -1 \\ -1 \\ 2 \\ 0 \end{pmatrix} \quad v_3 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 3 \end{pmatrix} \quad v_4 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} \]
Aufgabe 2 (7 Punkte)
Es sei $\text{Pol}_2 \mathbb{R}$ der Vektorraum der reellen Polynome vom Grad höchstens 2 mit den Basen $B: 1, X, X^2$ und $C: -1, X, 2 + X^2$.

Weiterhin soll die lineare Abbildung $\varphi: \text{Pol}_2 \mathbb{R} \rightarrow \text{Pol}_2 \mathbb{R}$ die folgenden Bedingungen erfüllen:

$\varphi(-1) = 2X$, $\varphi(X - 1) = 5 - 2X + 2X^2$, $\varphi(-2X^2 + 3X) = 11 - 22X + 6X^2$.

(a) Bestimmen Sie:

$\varphi(1) = \begin{pmatrix} -2X \\ 2 + 5X \\ 2 + X \end{pmatrix}$, $\varphi(X) = \begin{pmatrix} 5 - 4X + 2X^2 \\ 2 + X \end{pmatrix}$.

(b) Bestimmen Sie B^φ_B, C^φ_C und B^id_C:

$B^\varphi_B = \begin{pmatrix} 0 & 1 & 2 \\ -2 & -4 & 5 \\ 0 & 2 & 0 \end{pmatrix}$, $C^\varphi_C = \begin{pmatrix} 0 & 1 & 2 \\ -2 & -4 & 1 \\ 0 & 2 & 0 \end{pmatrix}$, $B^\text{id}_C = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Aufgabe 3 (3 Punkte)
Gegeben seien das Koordinatensystem g durch die Gerade $x_2 = 4x_1$. Bestimmen Sie die Koordinatentransformationen $x \mapsto F^g v$ und $x \mapsto G^g v$ sowie $x \mapsto B^g v$ und $x \mapsto C^g v$ und die Abbildung $\beta: \mathbb{R}^2 \rightarrow \mathbb{R}^2: y \mapsto B^g v + t$, wobei β die Spiegelung an der Geraden g bezeichnet, und geben Sie die folgenden Matrizen an.

$F = \begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix}$, $G = \begin{pmatrix} 1 \\ 17 \\ 1 \\ 4 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Aufgabe 4 (4 Punkte)
Gegeben ist das Koordinatensystem F in der euklidschen Normalform $4z_1^2 + 2z_2 = 0$.

Bestimmen Sie die folgenden Grenzwerte. Tragen Sie „divergent“ ein, falls kein Grenzwert existiert.

$$\lim_{n \to \infty} 2^{-n!} = \begin{cases} \text{divergent} & \text{falls } n \text{ nicht eine Zahl ist} \\ \frac{1}{2} & \text{falls } n \text{ eine Zahl ist} \end{cases}$$

$$\lim_{n \to \infty} \frac{(-1)^n}{2n} = \begin{cases} \text{divergent} & \text{falls } n \text{ eine Zahl ist} \\ \frac{1}{2} & \text{falls } n \text{ nicht eine Zahl ist} \end{cases}$$

Aufgabe 5 (3 Punkte)
Gegeben ist das Koordinatensystem F.

Bestimmen Sie die Koordinatentransformation von Standard- auf F-Koordinaten und umgekehrt.

$\kappa^F_{\text{Standard}}(x) = \begin{pmatrix} -2 \\ 5 \\ 2 \end{pmatrix}$, $\kappa^F_{\text{Standard}}(y) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Aufgabe 6 (4 Punkte)
Gegeben ist bezüglich des Standardkoordinatensystems E die Quadrik $Q = \{ (x_1, x_2) \in \mathbb{R}^2 | 2x_1^2 - 12x_1 + x_2 + 16 = 0 \}$.

Bestimmen Sie ein kartesisches Koordinatensystem F, in dem die Gleichung der Quadrik euklidische Normalform hat. Geben Sie diese Normalform sowie F und t für die Koordinatentransformation $x^F \mapsto F^g v + t$ an. Skizzieren Sie das Koordinatensystem F sowie die Quadrik im Standardkoordinatensystem.

euklidsche Normalform:

$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $t = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.
Aufgabe 7 (3 Punkte)

Skizzieren Sie die Mengen

\[M_1 := \left\{ -\sqrt{3} - i, (-\sqrt{3} - i)^3 \right\}, \quad M_2 := \left\{ z \in \mathbb{C} \mid |z - 2 - 3i| < 2 \right\} \]

in der komplexen Zahlenebene, in der die Punkte \(\pm \sqrt{3} \) und \(\pm \sqrt{3} i \) bereits eingezeichnet sind.

Der Rand von \(M_2 \) gehört nicht dazu.

Aufgabe 8 (6 Punkte)

Gegeben sei die Matrix \(A \in \mathbb{C}^{4 \times 4} \) mit

\[A = \begin{pmatrix} 4i & 2i & 0 & 0 \\ -3i & -i & 0 & 0 \\ 0 & 0 & -5 & -3 \\ 0 & 0 & 6 & 4 \end{pmatrix}. \]

Geben Sie alle Ergebnisse in der Form \(a + bi \) mit \(a, b \in \mathbb{R} \) an.

(a) Gegeben die Determinante und die Spur von \(A \) an.

\[\det(A) = 4 \quad \text{Sp}(A) = -1 + 3i \]

(b) Bestimmen Sie die Eigenwerte \(\lambda_j \) und je einen zugehörigen Eigenvektor \(v_j \) für \(j \in \{1, 2, 3, 4\} \).

\[\lambda_1 = i \quad \lambda_2 = 2i \quad \lambda_3 = -2 \quad \lambda_4 = 1 \]

\[v_1 = \begin{pmatrix} -2 \\ 3 \\ 0 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad v_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} \quad v_4 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 2 \end{pmatrix} \]
Aufgabe 2 (7 Punkte)
Es sei Pol₂ R der Vektorraum der reellen Polynome vom Grad höchstens 2 mit den Basen
\[B: 1, X, X^2 \quad \text{und} \quad C: 1, -X, -1 + X^2. \]
Weiterhin soll die lineare Abbildung \(\varphi: \text{Pol}_2 \mathbb{R} \rightarrow \text{Pol}_2 \mathbb{R} \) die folgenden Bedingungen erfüllen:
\[\varphi(-1) = -3 + 4X - 2X^2, \quad \varphi(X - 1) = -3 + 6X - 2X^2, \quad \varphi(-2X^2 + 3X) = 12X - 4X^2. \]
(a) Bestimmen Sie:
\[\varphi(1) = \begin{pmatrix} 1 \\ 3 \\ -4 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \quad \varphi(X) = \begin{pmatrix} 2X \\ -3X + 2X^2 \end{pmatrix}, \quad \varphi(X^2) = \begin{pmatrix} 3 - 4X + 2X^2 \\ -3X + 2X^2 \end{pmatrix}, \quad \varphi(-1 + X^2) = \begin{pmatrix} -3 + X \end{pmatrix}. \]
(b) Bestimmen Sie \(b\varphi_B \), \(c\varphi_C \) und \(b\text{id}_C \):
\[b\varphi_B = \begin{pmatrix} 3 & 0 & 0 \\ -4 & 2 & -3 \\ 2 & 0 & 2 \end{pmatrix}, \quad c\varphi_C = \begin{pmatrix} 5 & 0 & -3 \\ 4 & 2 & -1 \\ 2 & 0 & 1 \end{pmatrix}, \quad b\text{id}_C = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \]

Aufgabe 3 (3 Punkte)
Gegeben seien das Koordinatensystem
\[F = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, \quad \gamma = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}, \]
und die Gerade \(g \) durch die Gleichung \(x_2 = -4x_1 \). Bestimmen Sie die Koordinatentransformationen \(\gamma\beta\gamma^{-1}: \mathbb{R}^4 \rightarrow \mathbb{R}^4 \) und \(\beta\gamma\beta^{-1}: \mathbb{R}^4 \rightarrow \mathbb{R}^4 \) sowie die Abbildung \(\beta\gamma\beta^{-1}: \mathbb{R}^4 \rightarrow \mathbb{R}^4 \) mit den Matrizen
\[F = \begin{pmatrix} 1 & 4 \\ -4 & 1 \end{pmatrix}, \quad G = \begin{pmatrix} \frac{1}{17} & \frac{1}{17} & \frac{1}{17} & \frac{1}{17} \\ -1 & -1 & -1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

Aufgabe 4 (4 Punkte)
Bestimmen Sie die folgenden Grenzwerte. Tragen Sie „divergent“ ein, falls kein Grenzwert existiert.
\[\lim_{n \to \infty} \sum_{k=0}^{N} \left(\frac{1}{2}\right)^k = \begin{array}{c} 3 \\ \text{divergent} \end{array}, \quad \lim_{n \to \infty} \frac{(-1)^{n+1}}{2n} = \begin{array}{c} 1/4 \\ \text{divergent} \end{array}. \]

Aufgabe 5 (3 Punkte)
Gegeben ist das Koordinatensystem
\[\alpha = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}, \quad \beta = \begin{pmatrix} 5 & -2 \\ 2 & -1 \end{pmatrix}, \quad \gamma = \begin{pmatrix} 1 & -2 \\ 2 & -5 \end{pmatrix}, \quad \delta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \]
Bestimmen Sie die Koordinatentransformation von Standard- auf \(\alpha \)-Koordinaten und umgekehrt.
\[\alpha^{-1}(\beta^{-1}(\gamma^{-1}(\delta^{-1}(x)))) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \]

Aufgabe 6 (4 Punkte)
Gegeben ist bezüglich des Standardkoordinatensystems \(\mathbb{E} \) die Quadrik
\[Q = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid -2x_1^2 - 16x_1 + x_2 = 0 \right\}. \]
Bestimmen Sie ein kartesisches Koordinatensystem \(\mathbb{F} \), in dem die Gleichung der Quadrik euklidische Normalform hat. Geben Sie diese Normalform sowie \(G\) und \(t \) für die Koordinatentransformation \(\gamma\beta\gamma^{-1}: \mathbb{R}^4 \rightarrow \mathbb{R}^4 \) mit den Matrizen
\[F = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad t = \begin{pmatrix} -4 \\ -3 \end{pmatrix}. \]
Aufgabe 7 (3 Punkte)

Skizzieren Sie die Mengen

\[M_1 := \left\{ -1 + \sqrt[3]{3}i, (-1 + \sqrt[3]{3}i)^3 \right\}, \quad M_2 := \left\{ z \in \mathbb{C} \mid |z - 4 - i| < 2 \right\} \]

in der komplexen Zahlenebene, in der die Punkte \pm \sqrt{3} und \pm \sqrt{3}i bereits eingezeichnet sind.

Der Rand von \(M_2 \) gehört nicht dazu.

Aufgabe 8 (6 Punkte)

Gegeben sei die Matrix \(A \in \mathbb{C}^{4 \times 4} \) mit

\[
A = \begin{pmatrix}
-4i & -3i & 0 & 0 \\
6i & 5i & 0 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & -3 & -1
\end{pmatrix}.
\]

Geben Sie alle Ergebnisse in der Form \(a + bi \) mit \(a, b \in \mathbb{R} \) an.

(a) Geben Sie die Spur und die Determinante von \(A \) an.

\[\text{Sp}(A) = \begin{pmatrix} 3 + i \end{pmatrix}, \quad \det(A) = 4 \]

(b) Bestimmen Sie die Eigenwerte \(\lambda_j \) und je einen zugehörigen Eigenvektor \(v_j \) für \(j \in \{1, 2, 3, 4\} \).

\[
\lambda_1 = -i, \quad \lambda_2 = 2i, \quad \lambda_3 = 1, \quad \lambda_4 = 2
\]

\[
v_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 3 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}
\]
Aufgabe 2 (7 Punkte)
Es sei Pol₂ R der Vektorraum der reellen Polynome vom Grad höchstens 2 mit den Basen

\[B: 1, X, X^2 \] und \[C: -1, X, 1 - X^2. \]

Weiterhin soll die lineare Abbildung \(\varphi : \text{Pol}_2 \mathbb{R} \rightarrow \text{Pol}_2 \mathbb{R} \) die folgenden Bedingungen erfüllen:

\[\varphi (-1) = 5X - 3X^2, \quad \varphi (X - 1) = 8X - 3X^2, \quad \varphi (-2X^2 + 3X) = 2 + 17X - 6X^2. \]

(a) Bestimmen Sie:

\[\varphi (1) = \begin{pmatrix} -5X + 3X^2 \\ -1 - 4X + 3X^2 \\ 1 - X \end{pmatrix}, \quad \varphi (X) = \begin{pmatrix} 3X \\ \end{pmatrix}, \quad \varphi (X^2) = \begin{pmatrix} -1 - 4X + 3X^2 \\ \end{pmatrix} \]

(b) Bestimmen Sie \(B^\varphi_B, c^\varphi_c \) und \(c^\varphi_c : B^\varphi_B \)

\[B^\varphi_B = \begin{pmatrix} 0 & 0 & -1 \\ -5 & 3 & -4 \\ 3 & 0 & 3 \end{pmatrix}, \quad c^\varphi_c = \begin{pmatrix} 3 & 0 & -1 \\ 5 & 3 & -1 \\ 3 & 0 & 0 \end{pmatrix}, \quad c^\varphi_c = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \]

Aufgabe 3 (3 Punkte)
Gegeben seien das Koordinatensystem

\[F = \begin{pmatrix} 0 & 3 & 1 \\ 0 & 1 & -3 \end{pmatrix} \]

und die Gerade \(g \) durch die Gleichung \(x_2 = -3x_1 \). Bestimmen Sie die Koordinatentransformationen \(g^\varphi_\beta : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) und die Abbildung \(\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) sowie die Quadrik \(Q = \left\{ (x_1, x_2) \in \mathbb{R}^2 : -2x_1^2 - 12x_1 + x_2 = 19 \right\} \).

Bestimmen Sie die Koordinatentransformation von Standard- auf \(F \)-Koordinaten und umgekehrt.

\[\varphi^\beta_g (x^g) = \begin{pmatrix} 5 & 2 \\ -2 & -1 \end{pmatrix} x^g + \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \varphi^g_\beta (x^g) = \begin{pmatrix} 1 & 2 \\ -2 & -5 \end{pmatrix} x^g + \begin{pmatrix} 5 \\ -13 \end{pmatrix} \]

Aufgabe 4 (4 Punkte)
Bestimmen Sie die folgenden Grenzwerte. Tragen Sie „divergent“ ein, falls kein Grenzwert existiert.

\[\lim_{n \rightarrow \infty} \sum_{k=0}^{N} (-5)^k = \begin{cases} \text{divergent} & \text{falls } N \text{ endlich} \\ \end{cases} \quad \lim_{n \rightarrow \infty} n^4 \cdot n! = \begin{cases} \text{divergent} & \text{falls } n \text{ endlich} \\ \end{cases} \]

Aufgabe 5 (3 Punkte)
Gegeben ist das Koordinatensystem

\[F = \begin{pmatrix} 0 & 3 & 1 \\ 0 & 1 & -3 \end{pmatrix} \]

Bestimmen Sie die Koordinatentransformation von Standard- auf \(F \)-Koordinaten und umgekehrt.

\[\varphi^\beta_g (x^g) = \begin{pmatrix} 5 & 2 \\ -2 & -1 \end{pmatrix} x^g + \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \varphi^g_\beta (x^g) = \begin{pmatrix} 1 & 2 \\ -2 & -5 \end{pmatrix} x^g + \begin{pmatrix} 5 \\ -13 \end{pmatrix} \]

Aufgabe 6 (4 Punkte)
Gegeben ist bezüglich des Standardkoordinatensystems \(E \) die Quadrik

\[Q = \left\{ (x_1, x_2) \in \mathbb{R}^2 : -2x_1^2 - 12x_1 + x_2 = 19 \right\} \]

Bestimmen Sie ein kartesisches Koordinatensystem \(F \), in dem die Gleichung der Quadrik euklidische Normalform hat. Geben Sie diese Normalform sowie \(F \) und \(t \) für die Koordinatentransformation \(g^\varphi_\beta : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) und \(\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) an. Skizzieren Sie das Koordinatensystem \(F \) sowie die Quadrik im Standardkoordinatensystem.

\[\text{euklidische Normalform:} \]

\[-4x_1^2 + 2x_2 = 0 \]

\[F = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad t = \begin{pmatrix} -3 \\ 1 \end{pmatrix} \]