

Aufgabe 8 (4 Punkte)

Berechnen Sie:

$$\lim_{n \to \infty} \sqrt[n]{\frac{\pi^{n+1}}{\sqrt{2}^n} + \frac{\pi^n}{\sqrt{2}^{n+1}}} \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{4}{9}\right)^n \qquad \sum_{n=1}^{\infty} \left(e^{\frac{1}{n}+1} - e^{\frac{1}{n+1}+1}\right)$$

Aufgabe 9 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den Entwicklungspunkt $z_0 \in \mathbb{C}$ in der Form a+bi mit $a,b \in \mathbb{R}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$.

	$\sum_{n=0}^{\infty} \left(\frac{(z+8\mathrm{i}-7)^2}{5} \right)^n$	$\sum_{n=0}^{\infty} \frac{(4i z - 12 + 4\sqrt{2} i)^n}{1 + 3^n}$
z_0		
ρ		

Aufgabe 10 (2 Punkte)

Geben Sie alle möglichen Werte an, durch die sich die folgenden Funktionen $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ stetig an der Stelle 0 fortsetzen lassen. (Tragen Sie "keine" ein, falls sich die Funktion nicht stetig fortsetzen lässt.)

$\frac{x^{7457}}{ x ^{7457}}$	$\frac{-6x^2 - 1 + \cos(8x)}{2x^2 + 3x^8}$

+1/1/60+

Scheinklausur	Höhere Mathematik 2	13.7.20

Beachten Sie die folgenden **Hinweise**:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- \bullet Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$ Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matrikel-		
nummer und Ihre Übungsgruppennummer,		1 1
indem Sie die entsprechenden Kästen aus-		2 2
füllen. Tragen Sie außerdem Ihren Namen	3 3 3 3 3 3	3 3
und Ihre Matrikelnummer in die unten ste-		
henden Felder ein.		5 5
Name, Vorname:		6
	7 7 7 7 7 7	7
Matrikelnummer:	8 8 8 8 8 8	8
		9 9

_		 _	 _		_	

 $\boxed{0 \quad \boxed{1 \quad \boxed{2 \quad \boxed{3 \quad \boxed{}}}}$

 $0 \square 1 \square 2$

 $1 \square 2 \square 3 \square 4$

Aufgabe 2 (Freiwillige Angabe, keine Punkte)

Ich habe die Online-Lernplattform digital.mathematik.uni-stuttgart.de zur Vorbereitung auf die Scheinklausur benutzt.

ja nein

Aufgabe 3 (4 Punkte)

Gegeben sei die Abbildung

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 e^{-(9x^2 + y^2)} + 1.$$

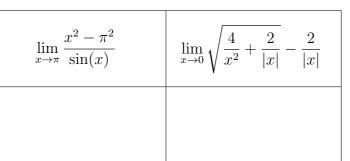
(a) Bestimmen Sie den Gradienten von f.

$$\operatorname{grad} f \begin{pmatrix} x \\ y \end{pmatrix} =$$

(b) Geben Sie die kritischen Stellen von f an.

Aufgabe 4 (2 Punkte)

Berechnen Sie:



Aufgabe 5 (5 Punkte)

Berechnen Sie die folgenden Integrale.

$$\int \frac{x+5}{2(x+1)(x+2)} \, \mathrm{d} x =$$

$$\int \sqrt[3]{x} \sqrt[5]{x} \, \mathrm{d} x =$$

+1/2/59+

Aufgabe 6 (3 Punkte)

Gegeben sind die Folgen $(a_n)_{n>2}$ und $(b_n)_{n>0}$ durch

$$a_n = \begin{cases} \sum_{j=2}^k \frac{1}{3^j} & \text{für } n = 2k \,, \\ \sum_{k=1}^k \frac{1}{3^j} & \text{für } n = 2k+1 \,, \end{cases} \quad \text{und} \quad b_n = (-1)^n \frac{2n}{6n+7}.$$

Berechnen Sie:

Aufgabe 7 (6 Punkte)

Gegeben sind die folgenden Abbildungen.

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto e^{8x+15y}$$
 $g \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 + y^2 - 1$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung $g\binom{x}{y}=0$ beschreiben.

(b) Finden Sie alle $\binom{x}{y}$ so, dass es ein $\lambda \in \mathbb{R}$ gibt, das dieses Gleichungssystem löst:

(c) Finden Sie den kleinsten Wert, den f auf dem Kreis $K = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid g \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\}$ annimmt, und geben Sie einen Punkt $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in K$ an, wo dieser angenommen wird.

$$\min_{\binom{x}{y} \in K} f \binom{x}{y} = \boxed{ \text{wird angenommen für } \binom{x_0}{y_0} = \boxed{ }$$

Aufgabe 8 (4 Punkte)

Berechnen Sie:

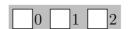
$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{3}{7}\right)^n$	$\lim_{n \to \infty} \sqrt[n]{\frac{\pi^{n+1}}{\sqrt{3}^n} + \frac{\pi^n}{\sqrt{3}^{n+1}}}$	$\sum_{n=1}^{\infty} \left(\sqrt{\pi^{\frac{1}{n}+1}} - \sqrt{\pi^{\frac{1}{n+1}+1}} \right)$

Aufgabe 9 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den Entwicklungspunkt $z_0 \in \mathbb{C}$ in der Form a+bi mit $a,b \in \mathbb{R}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$.

	$\sum_{n=0}^{\infty} \left(\frac{(z+7\mathrm{i}+8)^2}{6} \right)^n$	$\sum_{n=0}^{\infty} \frac{(5i z - 15 - 10\sqrt{3} i)^n}{1 + 2^n}$
z_0		
ρ		

Aufgabe 10 (2 Punkte)



Geben Sie alle möglichen Werte an, durch die sich die folgenden Funktionen $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ stetig an der Stelle 0 fortsetzen lassen. (Tragen Sie "keine" ein, falls sich die Funktion nicht stetig fortsetzen lässt.)

$\frac{-7x^2 - 1 + \cos(5x)}{9x^2 + 2x^6}$	$\frac{x^{8405}}{ x ^{8405}}$

+2/1/58+

Scheinklausur	Höhere Mathematik 2	13.7.202

Beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- $\bullet\,$ Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e ^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolq!

Aufgebe 1 (1 Dunlit)	Matrikelnummer:	Gruppe
Aufgabe 1 (1 Punkt)01 Kodieren Sie in den Feldern Ihre Matrikel-		
nummer und Ihre Übungsgruppennummer,		
indem Sie die entsprechenden Kästen aus-		
füllen. Tragen Sie außerdem Ihren Namen	$\boxed{}$	3
und Ihre Matrikelnummer in die unten ste-		4
henden Felder ein.	5 5 5 5 5 5	
Name, Vorname:		6
		7
Matrikelnummer:	8 8 8 8 8 8	8 8
		9

ш			_	_			_
			\Box				

 $0 \square 1 \square 2 \square 3 \square$

 $\bigcirc 0 \bigcirc 1 \bigcirc 2$

 $1 \square 2 \square 3 \square 4$

Aufgabe 2 (Freiwillige Angabe, keine Punkte)

Ich habe die Online-Lernplattform digital.mathematik.uni-stuttgart.de zur Vorbereitung auf die Scheinklausur benutzt.

ja nein

Aufgabe 3 (4 Punkte)

Gegeben sei die Abbildung

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 e^{-(4x^2 + y^2)} + 2.$$

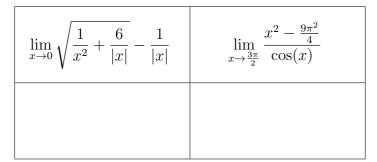
(a) Bestimmen Sie den Gradienten von f.

$$\operatorname{grad} f \begin{pmatrix} x \\ y \end{pmatrix} =$$

(b) Geben Sie die kritischen Stellen von f an.

Aufgabe 4 (2 Punkte)

Berechnen Sie:



Aufgabe 5 (5 Punkte)

Berechnen Sie die folgenden Integrale.

$$\int \frac{x+4}{2(x+2)(x+3)} \, \mathrm{d} x = \boxed{}$$

$$\int \sqrt[3]{x} \sqrt[7]{x} \, \mathrm{d} x =$$

+2/2/57+

Aufgabe 6 (3 Punkte)

Gegeben sind die Folgen $(a_n)_{n>2}$ und $(b_n)_{n>0}$ durch

$$a_n = \begin{cases} \sum_{j=2}^k \frac{1}{4^j} & \text{für } n = 2k, \\ \sum_{j=1}^k \frac{1}{4^j} & \text{für } n = 2k+1, \end{cases} \quad \text{und} \quad b_n = (-1)^n \frac{2n}{10n+9}.$$

Berechnen Sie:

Aufgabe 7 (6 Punkte)

Gegeben sind die folgenden Abbildungen.

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto e^{5x+12y}$$
 $g \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 + y^2 - 1$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung $g\binom{x}{y}=0$ beschreiben.

(b) Finden Sie alle $\binom{x}{y}$ so, dass es ein $\lambda \in \mathbb{R}$ gibt, das dieses Gleichungssystem löst:

(c) Finden Sie den größten Wert, den f auf dem Kreis $K = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid g \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\}$ annimmt, und geben Sie einen Punkt $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in K$ an, wo dieser angenommen wird.

$$\max_{\binom{x}{y} \in K} f \binom{x}{y} = \boxed{ \qquad \text{wird angenommen für } \binom{x_0}{y_0} = \boxed{ }}$$

Berechnen Sie:

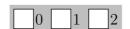
$$\sum_{n=1}^{\infty} \left(\pi^{\frac{1}{n}+1} - \pi^{\frac{1}{n+1}+1} \right) \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{7}{6} \right)^n \qquad \lim_{n \to \infty} \sqrt[n]{\frac{\pi^{n+1}}{\sqrt{5}^n} + \frac{\pi^n}{\sqrt{5}^{n+1}}}$$

Aufgabe 9 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den Entwicklungspunkt $z_0 \in \mathbb{C}$ in der Form a+bi mit $a,b \in \mathbb{R}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$.

	$\sum_{n=0}^{\infty} \left(\frac{(z+6\mathrm{i}-5)^2}{7} \right)^n$	$\sum_{n=0}^{\infty} \frac{(4iz + 8 - 12\sqrt{2}i)^n}{1 + 5^n}$
z_0		
ρ		

Aufgabe 10 (2 Punkte)



Geben Sie alle möglichen Werte an, durch die sich die folgenden Funktionen $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ stetig an der Stelle 0 fortsetzen lassen. (Tragen Sie "keine" ein, falls sich die Funktion nicht stetig fortsetzen lässt.)

$\frac{x^{8609}}{ x ^{8609}}$	$\frac{3x^2 - 1 + \cos(3x)}{4x^2 + 6x^4}$

+3/1/56+

Scheinklausur	Höhere Mathematik 2	13.7.20

Beachten Sie die folgenden **Hinweise**:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt.

 Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- $\bullet\,$ Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e ^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolg!

Aufraha 1 (1 Dunlet)	Matrikelnummer:	Gruppe
Aufgabe 1 (1 Punkt)01 Kodieren Sie in den Feldern Ihre Matrikel-		0
nummer und Ihre Übungsgruppennummer,		
indem Sie die entsprechenden Kästen aus-		
füllen. Tragen Sie außerdem Ihren Namen	3 3 3 3 3 3	3
und Ihre Matrikelnummer in die unten ste-		4
henden Felder ein.	5 5 5 5 5 5	
Name, Vorname:		
	7 7 7 7 7 7	7
Matrikelnummer:	8 8 8 8 8 8	8
		9

 $0 \square 1 \square 2 \square 3 \square$

 $\bigcirc 0 \bigcirc 1 \bigcirc 2$

 $1 \square 2 \square 3 \square$

Aufgabe 2 (Freiwillige Angabe, keine Punkte)

Ich habe die Online-Lernplattform digital.mathematik.uni-stuttgart.de zur Vorbereitung auf die Scheinklausur benutzt.

ja nein

Aufgabe 3 (4 Punkte)

Gegeben sei die Abbildung

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto y^2 e^{-(x^2 + 9y^2)} + 3.$$

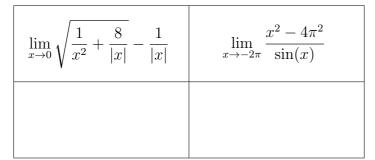
(a) Bestimmen Sie den Gradienten von f.

$$\operatorname{grad} f \begin{pmatrix} x \\ y \end{pmatrix} =$$

(b) Geben Sie die kritischen Stellen von f an.

Aufgabe 4 (2 Punkte)

Berechnen Sie:



Aufgabe 5 (5 Punkte)

Berechnen Sie die folgenden Integrale.

$$\int \frac{x+2}{2(x-2)(x-1)} \, \mathrm{d} \, x = \boxed{}$$

$$\int \sqrt[4]{x} \sqrt[5]{x} \, \mathrm{d} x =$$

+3/2/55+

Aufgabe 6 (3 Punkte)

Gegeben sind die Folgen $(a_n)_{n>2}$ und $(b_n)_{n>0}$ durch

$$a_n = \begin{cases} \sum_{j=2}^k \frac{1}{5^j} & \text{für } n = 2k \,, \\ \sum_{k=1}^k \frac{1}{5^j} & \text{für } n = 2k+1 \,, \end{cases} \quad \text{und} \quad b_n = (-1)^n \frac{3n}{6n+7}.$$

Berechnen Sie:

Aufgabe 7 (6 Punkte)

Gegeben sind die folgenden Abbildungen.

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \mathrm{e}^{15x - 8y}$$
 $g \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 + y^2 - 1$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung $g\binom{x}{y} = 0$ beschreiben.

(b) Finden Sie alle $\binom{x}{y}$ so, dass es ein $\lambda \in \mathbb{R}$ gibt, das dieses Gleichungssystem löst:

(c) Finden Sie den größten Wert, den f auf dem Kreis $K = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid g \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\}$ annimmt, und geben Sie einen Punkt $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in K$ an, wo dieser angenommen wird.

$$\max_{\binom{x}{y} \in K} f \binom{x}{y} = \boxed{ \text{wird angenommen für } \binom{x_0}{y_0} = \boxed{ }$$

Berechnen Sie:

$$\lim_{n \to \infty} \sqrt[n]{\frac{\pi^{n+1}}{\sqrt{7}^n} + \frac{\pi^n}{\sqrt{7}^{n+1}}} \qquad \sum_{n=1}^{\infty} \left(\sqrt{e^{\frac{1}{n}+1}} - \sqrt{e^{\frac{1}{n+1}+1}} \right) \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{5}{2} \right)^n$$

Aufgabe 9 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den Entwicklungspunkt $z_0 \in \mathbb{C}$ in der Form a+bi mit $a,b \in \mathbb{R}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$.

	$\sum_{n=0}^{\infty} \left(\frac{(z+2i+6)^2}{11} \right)^n$	$\sum_{n=0}^{\infty} \frac{(3i z + 9 + 6\sqrt{5} i)^n}{1 + 4^n}$
z_0		
ρ		

Aufgabe 10 (2 Punkte)

Geben Sie alle möglichen Werte an, durch die sich die folgenden Funktionen $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ stetig an der Stelle 0 fortsetzen lassen. (Tragen Sie "keine" ein, falls sich die Funktion nicht stetig fortsetzen lässt.)

$\frac{3x^2 - 1 + \cos(4x)}{5x^2 + 3x^4}$	$\frac{x^{4581}}{ x ^{4581}}$

+4/1/54+

Scheinklausur	Höhere Mathematik 2	13.7.202

Beachten Sie die folgenden **Hinweise:**

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- \bullet Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolq!

Aufmaha 1 (1 Dunlet)	Matrikelnummer:	Gruppe
Aufgabe 1 (1 Punkt)01 Kodieren Sie in den Feldern Ihre Matrikel-		
nummer und Ihre Übungsgruppennummer,		
indem Sie die entsprechenden Kästen aus-		2
füllen. Tragen Sie außerdem Ihren Namen	\square 3 \square 3 \square 3 \square 3 \square 3 \square 3	3
und Ihre Matrikelnummer in die unten ste-		4
henden Felder ein.	5 5 5 5 5 5	
Name, Vorname:		6
		7
Matrikelnummer:	8 8 8 8 8 8	8
		9

				_		
_						_

 $0 \square 1 \square 2 \square 3 \square$

 $0 \square 1 \square 2$

 $1 \square 2 \square 3 \square 4$

Aufgabe 2 (Freiwillige Angabe, keine Punkte)

Ich habe die Online-Lernplattform digital.mathematik.uni-stuttgart.de zur Vorbereitung auf die Scheinklausur benutzt.

ja nein

Aufgabe 3 (4 Punkte)

Gegeben sei die Abbildung

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto y^2 e^{-(x^2 + 4y^2)} + 4.$$

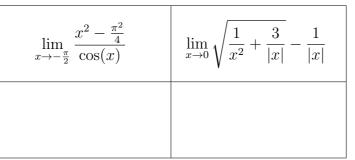
(a) Bestimmen Sie den Gradienten von f.

$$\operatorname{grad} f \begin{pmatrix} x \\ y \end{pmatrix} =$$

(b) Geben Sie die kritischen Stellen von f an.

Aufgabe 4 (2 Punkte)

Berechnen Sie:



Aufgabe 5 (5 Punkte)

Berechnen Sie die folgenden Integrale.

$$\int \frac{x+2}{2(x-3)(x-2)} \, \mathrm{d} \, x =$$

$$\int \sqrt[4]{x} \sqrt[7]{x} \, \mathrm{d} x =$$

+4/2/53+

Aufgabe 6 (3 Punkte)

Gegeben sind die Folgen $(a_n)_{n>2}$ und $(b_n)_{n>0}$ durch

$$a_n = \begin{cases} \sum_{j=2}^k \frac{1}{6^j} & \text{für } n = 2k, \\ \sum_{j=1}^k \frac{1}{6^j} & \text{für } n = 2k+1, \end{cases} \quad \text{und} \quad b_n = (-1)^n \frac{3n}{12n+5}.$$

Berechnen Sie:

$$\lim_{k \to \infty} a_{2k+1} = \boxed{\qquad \qquad \underbrace{\lim_{n \to \infty}}_{n \to \infty} a_n = \boxed{\qquad \qquad } \overline{\lim}_{n \to \infty} b_n = \boxed{\qquad }$$

Aufgabe 7 (6 Punkte)

Gegeben sind die folgenden Abbildungen.

$$f \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \mathrm{e}^{12x - 5y}$$
 $g \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 + y^2 - 1$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung $g\binom{x}{y}=0$ beschreiben.

(b) Finden Sie alle $\binom{x}{y}$ so, dass es ein $\lambda \in \mathbb{R}$ gibt, das dieses Gleichungssystem löst:

(c) Finden Sie den kleinsten Wert, den f auf dem Kreis $K = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid g \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\}$ annimmt, und geben Sie einen Punkt $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in K$ an, wo dieser angenommen wird.

$$\min_{\binom{x}{y} \in K} f \binom{x}{y} = \boxed{ \text{wird angenommen für } \binom{x_0}{y_0} = \boxed{ }$$