

Aufgabe 8 (4 Punkte)

Berechnen Sie das folgende Integral, indem Sie zunächst $u = \sqrt{x}$ substituieren:

$$\int_0^{\pi^2} \cos\left(\sqrt{x}\right) dx = \int_0^{\pi} 2u \cos(u) du$$

$$= \left[2u \sin(u) \right]_0^{\pi} - \int_0^{\pi} 2\sin(u) du = \begin{bmatrix} -4 \end{bmatrix}$$

Aufgabe 9 (4 Punkte)

Für welche $\alpha \in \mathbb{R}$ besitzt das folgende Vektorfeld ein Potential $U_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$?

$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} (2y-1)(y-2\alpha x(1+x^2)^{-\alpha}) \\ 2(xy-(1+x^2)^{\alpha})+(2y-1)x \end{pmatrix}$$

$$\alpha \in \left\{0, \frac{1}{2}\right\}$$

Bestimmen Sie für $\alpha = 0$ ein zugehöriges Potential U_0 , so dass $U_0\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = 17$ gilt:

$$U_0\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = 2xy^2 - xy - 2y + 18$$

Aufgabe 10 (2 Punkte)

Gegeben sei die Funktion

$$f(x) = e^{-3\sin(x)\cos(x)}.$$

Berechnen Sie die erste Ableitung von f:

$$f'(x) = 3\left(\sin^2(x) - \cos^2(x)\right) e^{-3\sin(x)\cos(x)}$$

Bestimmen Sie das Taylorpolynom erster Stufe um den Entwicklungspunkt $x_0 = \pi$:

$$T_1(f, x, \pi) = \begin{vmatrix} 1 - 3(x - \pi) \end{vmatrix}$$

+1/1/60+

Schein-Nachklausur Höhere Mathematik 2 19.7.2024

Beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- \bullet Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

$\sin x$	$\cos x$
0	1
$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
1	0
	0 $\frac{1}{2}$ $\frac{1}{2}\sqrt{2}$ $\frac{1}{2}\sqrt{3}$

 $a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}^+$

Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matrikel-		
nummer und Ihre Übungsgruppennummer,		
indem Sie die entsprechenden Kästen aus-		2 2
füllen. Tragen Sie außerdem Ihren Namen	3 3 3 3 3 3	
und Ihre Matrikelnummer in die unten ste-		4 4
henden Felder ein.	5 5 5 5 5 5 5	5 5
Name, Vorname:		6
		7
Matrikelnummer:	8 8 8 8 8 8	8
		9 9

Aufgabe 2 (4 Punkte)

Berechnen Sie:

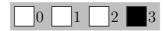
$$\lim_{n \to \infty} \sum_{j=0}^{n} \left(-\frac{1}{16} \right)^{j} \frac{(5\pi)^{2j}}{(2j)!} \qquad \lim_{t \to 0} \frac{\sin(t\pi)}{t} \qquad \qquad \sum_{n=2}^{\infty} \left((n+1)\sin\left(\frac{\pi}{n+1}\right) - n\sin\left(\frac{\pi}{n}\right) \right)$$
$$-\frac{\sqrt{2}}{2} \qquad \qquad \pi \qquad \qquad \pi - 2$$

Aufgabe 3 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den Entwicklungspunkt $z_0 \in \mathbb{C}$ in der Form a + bi mit $a, b \in \mathbb{R}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$.

	$\sum_{n=0}^{\infty} \frac{(3z+1-2i)^n}{ 1-i ^{n+1}}$	$\sum_{n=0}^{\infty} 8^n (z - 2i - 1)^{3n}$
z_0	$-\frac{1}{3} + \frac{2}{3}i$	1+2i
ρ	$\frac{\sqrt{2}}{3}$	$\frac{1}{2}$

Aufgabe 4 (3 Punkte)



 $\overline{32}$

Gegeben sind die Folgen:

$$a_n = \left| \mathbf{i}^n - \frac{\sqrt{2}}{2} \right| \quad \text{und} \quad b_n = \begin{cases} \left(\frac{1}{2}\right)^{2k+1} & \text{für } n = 2k, \ k > 0 \\ \\ \left(\frac{1}{2}\right)^{2k-2} & \text{für } n = 2k+1, \ k \ge 0 \end{cases}.$$

Berechnen Sie:

$$\overline{\lim}_{n \to \infty} a_n = \boxed{1 + \frac{\sqrt{2}}{2}}$$

$$\overline{\lim_{n\to\infty}} \sqrt[n]{b_n} =$$

$$\underline{\lim_{n\to\infty}} \, \frac{b_{n+1}}{b_n} = \boxed{}$$

+1/2/59+

Aufgabe 5 (3 Punkte)

Geben Sie alle möglichen Werte an, durch die sich die folgenden Funktionen $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ stetig in 0 fortsetzen lassen. (Tragen Sie "keine" ein, falls sich die Funktion nicht stetig fortsetzen lässt.)

$\frac{(\pi x)^{5432}}{ x ^{5432}}$	$\frac{\sqrt[3]{x^7} - 1 + \cos(-3x)}{2x^2 + 6x^4}$	$\frac{\ln(x^{2024}) - x^3 - x}{x}$
π^{5432}	$-\frac{9}{4}$	keine

Aufgabe 6 (2 Punkte)

Berechnen Sie die folgenden Grenzwerte:

$\lim_{x \to +\infty} \frac{x \sin(x) + 3x^3}{(2x)^3 + 4x}$	$\lim_{x \to +\infty} e^x - \sqrt{e^{2x} - e^x}$
$\frac{3}{8}$	$\frac{1}{2}$

Aufgabe 7 (4 Punkte)

Gegeben sei die Abbildung

$$f: \mathbb{R}^3 \to \mathbb{R}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto z e^{(x-1)^2 + y^2 - z^2 - z}$$

(a) Bestimmen Sie den Gradienten von f.

$$\operatorname{grad} f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = e^{(x-1)^2 + y^2 - z^2 - z} \begin{pmatrix} 2(x-1)z \\ 2yz \\ 1 - 2z^2 - z \end{pmatrix}$$

(b) Geben Sie die kritischen Stellen von f an.

$$(1,0,-1)^{\top} \text{ und } (1,0,\frac{1}{2})^{\top}$$