

Vortragsübung 4

Aufgabe 1 Lineare Abbildungen

Untersuchen Sie, ob die folgenden Abbildungen $f: \mathbb{C} \to \mathbb{C}$, mit \mathbb{C} als \mathbb{C} -Vektorraum und mit \mathbb{C} als \mathbb{R} -Vektorraum, linear sind:

- a) f(z) = 5z 2iz
- b) $f(z) = \overline{z}$
- c) f(z) = 2z + 3i

Aufgabe 2 Lineare Abbildungen und Matrizen, Kern, Bild, Dimensionsformel Gegeben sei die lineare Abbildung $L: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (2x + y, 4x + 2y, 0)$.

- a) Bestimmen Sie die Matrixdarstellung $M_L^{\mathcal{E}_3,\mathcal{E}_2}$ von L bezüglich der kanonischen Basen $\mathcal{E}_2 = \{e_1, e_2\}$ und $\mathcal{E}_3 = \{e_1, e_2, e_3\}$.
- b) Geben Sie den Kern von L an.
- c) Bestimmen Sie die Dimension von Kern(L) und Bild(L) ohne die explizite Berechnung von Bild(L).
- d) Geben Sie das Bild von L an.
- e) Ist L injektiv?

Aufgabe 3 Matrizenmultiplikation, Verknüpfung von linearen Abbildungen

a) Gegeben seien die folgenden Matrizen:

$$A_1 = \begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, A_3 = (1, -2, 1), A_4 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

- i) Geben Sie an, welche der Matrixprodukte $A_i A_j$, mit $i, j \in \{1, \dots, 4\}$ existieren.
- ii) Bestimmen Sie das Matrixprodukt A_1A_2 .
- b) Gegeben seien die linearen Abbildungen $S:\mathbb{R}^3\mapsto\mathbb{R}^3$ und $T:\mathbb{R}^3\mapsto\mathbb{R}^3$ mit den zugehörigen Matrixdarstellungen

$$M_S^{\mathcal{E}_3,\mathcal{E}_3} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 1 \\ 2 & 0 & -1 \end{pmatrix}, \qquad M_T^{\mathcal{E}_3,\mathcal{E}_3} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & -1 \\ 1 & -2 & -1 \end{pmatrix}.$$

- i) Bestimmen Sie $M_{4S-2T}^{\mathcal{E}_3,\mathcal{E}_3}$.
- ii) Bestimmen Sie die Matrixdarstellung der Verkettung $S \circ T$.

1 09.05.2019

Aufgabe 4 Lineare Abbildungen und Matrizen

a) i) Gegeben sei der Vektorraum \mathbb{R}^2 mit der kanonischen Basis $\mathcal{E}_2 = \{e_1, e_2\}$ und der Basis $B = \{b_1, b_2\}$ mit $b_1 = (1, 1)^{\top}$ und $b_2 = (1, -1)^{\top}$, sowie der Vektorraum \mathbb{R}^3 mit der kanonischen Basis $\mathcal{E}_3 = \{e_1, e_2, e_3\}$ und der Basis $C = \{c_1, c_2, c_3\}$ mit $c_1 = (2, 1, -1)^{\top}$, $c_2 = (1, 0, 3)^{\top}$ und $c_3 = (-1, 2, 1)^{\top}$. Die lineare Abbildung $L : \mathbb{R}^3 \to \mathbb{R}^2$ sei gegeben durch

$$L\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_2 - 3x_3 \\ x_1 - x_2 \end{pmatrix}.$$

Bestimmen Sie die Matrixdarstellungen $M_L^{\mathcal{E}_2,\mathcal{E}_3}$ und $M_L^{B,C}.$

- ii) Gegeben sei der Vektor $x=(3,1,2)^T$ in Koordinaten bzgl. der Basis C. Geben Sie L(x) bzgl. der Basis B an.
- b) Es bezeichne P_3 den Vektorraum der reellen Polynome $p \colon \mathbb{R} \to \mathbb{R}$ bis zum Grad 3. Die lineare Abbildung $D \colon P_3 \to P_3$ ist gegeben durch $D(p)(x) = (3x^2 1)p''(x) 2p(x)$ für alle $x \in \mathbb{R}$. Bestimmen Sie eine Matrixdarstellung von D bezüglich der Basis $\{f_k : k = 0, 1, 2, 3\}$ mit $f_k(x) = x^k, k = 0, 1, 2, 3$.

2 **09.05.2019**