Übungsblatt 10

»Die Mathematik ist eine wunderbare Lehrerin für die Kunst, die Gedanken zu ordnen, Unsinn zu beseitigen und Klarheit zu schaffen.«

(Jean-Henri Fabre; 1823 - 1915)

S 10.1. Sei $t \in \mathbb{R}$ ein Parameter und seien $u, v, w \in \mathbb{R}^3$ gegeben durch

$$u = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \qquad v = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \qquad \text{und} \qquad w(t) = \begin{pmatrix} 3 \\ 4 \\ t^2 \end{pmatrix}.$$

- (a) Für welche $t \in \mathbb{R}$ ist die Menge $M_t := \{u, v, w(t)\} \subseteq \mathbb{R}^3$ linear abhängig bzw. linear unabhängig?
- **(b)** Wie groß ist $\dim LH(M_t)$ jeweils?
- (c) Sei V ein beliebiger \mathbb{K} -Vektorraum. Beweisen Sie: Ist $\{x,y\}\subseteq V$ linear unabhängig über \mathbb{K} , so auch $\{x,y-x\}$.
- **V 10.2.** Seien V und W beliebige (möglicherweise unendlichdimensionale) Vektorräume und $A:V\to W$ eine lineare Abbildung. Sei weiter $M:=\{v_1,\ldots,v_n\}\subseteq V$ eine beliebige, endliche Teilmenge und $N:=\{Av_1,\ldots,Av_n\}\subseteq W$ die Menge der Bilder der Vektoren in M unter A. Beweisen oder widerlegen Sie (durch ein Gegenbeispiel) folgende Aussagen.
 - (a) M ist linear abhängig $\Rightarrow N$ ist linear abhängig.
 - **(b)** M ist linear unabhängig $\Rightarrow N$ ist linear unabhängig.
 - (c) N ist linear abhängig $\Rightarrow M$ ist linear abhängig.
 - (d) N ist linear unabhängig $\Rightarrow M$ ist linear unabhängig.
- **V 10.3.** Unter den Voraussetzungen von Aufgabe **V 10.2**: Zeigen Sie, dass **V 10.2 (b)** genau dann gilt, wenn A injektiv ist.
- **V 10.4.** Geben Sie eine Basis B von U und die Dimension $\dim(U)$ an. Dabei ist $U=\mathrm{LH}\{v_1,v_2,v_3,v_4\}$ der Untervektorraum von $V=\mathbb{R}^4$ mit

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \qquad v_4 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix}.$$

Bitte wenden.

V 10.5. Sei V ein endlich-dimensionaler \mathbb{K} -Vektorraum und $A:V\to V$ linear. Beweisen Sie die Äquivalenz A ist injektiv $\Leftrightarrow A$ ist surjektiv.

V 10.6. Gegeben sind die Basen $B, B' \subseteq \mathbb{R}^3$ von \mathbb{R}^3 mit

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \quad \text{und} \quad B' = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

(a) Gegeben ist der Vektor $v \in \mathbb{R}^3$ mit der Darstellung

$$v_{B'} = \begin{pmatrix} 2\\1\\4 \end{pmatrix} \in \mathbb{R}^3$$

in der Basis B'. Berechnen Sie v_B .

(b) Gegeben ist der Vektor $w \in \mathbb{R}^3$ mit der Darstellung

$$w_B = \begin{pmatrix} 4\\3\\8 \end{pmatrix} \in \mathbb{R}^3$$

in der Basis B. Berechnen Sie $w_{B'}$.

Z 10.7. Sei V ein \mathbb{K} -Vektorraum und $U\subseteq V$ ein Untervektorraum. Seien $x,y\in V$ mit $x\notin U$ und $x\in \mathrm{LH}(U\cup\{y\})$. Zeigen Sie

$$LH(U \cup \{y\}) = LH(U \cup \{x\}).$$

Hinweis: Nach Definition 3.5 gilt

 $M \subseteq U \land U$ ist Untervektorraum von $V \Rightarrow LH(M) \subseteq U$.

Das Team der Vorlesung wünscht Ihnen erholsame Ferien und schöne Feiertage.