Zweite Scheinklausur

- ► Es gibt 11 Aufgaben. Aufgabe **Z 11.** ist eine (freiwillige) Zusatzaufgabe. Die jeweilige Punktzahl steht in Klammern hinter der Aufgabennummer.
- ▶ Die Maximalpunktzahl beträgt somit 46 + 1 = 47 Punkte.
- ▶ Zum Bestehen sind in Summe beider Scheinklausuren 36 von 34 + 46 = 80 Punkten (ohne Zusatzaufgaben) hinreichend.
- ▶ Die Bearbeitungszeit beträgt 90 Minuten.
- ► Es sind keine Hilfsmittel zugelassen. Eigenes Papier darf lediglich als Konzeptpapier verwendet aber nicht mit abgegeben werden.
- ▶ In Aufgabe A 7. sind alle Schritte zu begründen. Dabei dürfen Aussagen, die in der Vorlesung oder den Übungen bereits gezeigt wurden, verwendet werden, sofern diese nicht Gegenstand der Aufgabe selbst sind.
- ▶ Aufgabe A 7. lösen Sie bitte auf Seite 9 der Klausur.
- ▶ Bei Aufgabe **A 10.** ergeben korrekte Kreuze +0.5, falsche Kreuze -0.5 und nicht gesetzte Kreuze 0 Punkte. Negative Punkte werden nicht über die Aufgabe hinaus übertragen.
- ▶ Abgaben mit Bleistift, sowie Abgaben in roter oder grüner Farbe werden nicht gewertet.
- ▶ Füllen Sie bitte zunächst die folgenden vier Kästchen korrekt aus.
- ▶ Viel Erfolg!

Nachname, Vorname	Gruppennummer
Matrikelnummer	Vorname des Tutors

Korrektur:

1	2	3	4	5	6	7	8	9	10	11	Σ

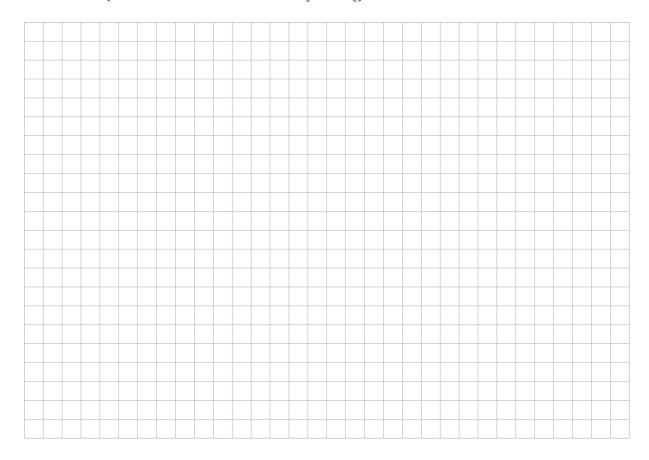
- **A 1.** [7 Punkte] Wir betrachten stets den Grenzwert $n \to +\infty$. Entscheiden Sie bei jeder der Folgen
 - lacktriangle falls sie konvergent ist, gegen welchen Grenzwert $\lim_{n \to \infty} x_n$ sie konvergiert;
 - ▶ falls sie divergent ist, so tragen Sie bitte ein "d" in das entsprechende Kästchen ein.

Folge (x_n) mit	$\lim_{n\to\infty} x_n \text{ oder } \mathbf{d}$
$x_n = (-42)^n$	
$x_n = \left(1 + \frac{1}{n}\right)^n$	
$x_n = \frac{2n^2 - n}{3n^2 + n}$	
$x_n = \frac{2^n - 3^n}{2^n + 3^n}$	
$x_n = \frac{2^n + 4^n}{2^n - 3^n}$	
$x_n = \frac{5n-6}{2n+2} - \frac{2n^2+6n+6}{(n\sqrt{2}+\sqrt{2})^2}$	
$x_n = \sqrt{n+3} - \sqrt{n+\sqrt{n}}$	

A 2. [4 Punkte] Füllen Sie die Spalten $\operatorname{Re} z$, $\operatorname{Im} z$, |z| und $\operatorname{arg} z$ der untenstehenden Tabelle zu den folgenden komplexen Zahlen $z \in \mathbb{C}$ korrekt aus. Dabei ist stets $\operatorname{arg} z \in [0, 2\pi[$ und alle Einträge sind möglichst weit zu vereinfachen.

$z\in\mathbb{C}$	$\operatorname{Re} z$	$\operatorname{Im} z$	z	$\arg z$
$(\sqrt{2} - 2i)(\sqrt{2} + 2i)i$				
$\frac{2+3i}{-3+2i}$				
$\sum_{k=1}^{26} i^k$				
$\left(2e^{i\frac{\pi}{7}}\right)\left(3e^{-i\pi}\right)$				

- A 3. [4 Punkte] Zeichnen Sie folgende Mengen in eine gemeinsame komplexe Zahlenebene und beschriften Sie sowohl die Achsen (auch mit Skala) als auch die eingezeichneten Mengen.
 - (a) $M_1 := \{ z \in \mathbb{C} : \operatorname{Im} z = -4 \lor \operatorname{Im} z = 4 \},$
 - **(b)** $M_2 := \bigcup_{k=1}^{3} \left\{ z \in \mathbb{C} : |z + 2k| \le \frac{1}{2} \right\}$,
 - (c) $M_3:=\left\{z\in\mathbb{C}\ :\ |z|\leq 3\ \land\ \arg z\notin\left]\frac{3\pi}{4},\frac{5\pi}{4}\right[
 ight\}$



A 4. [5 Punkte]

(a) Wie lauten die beiden Aussagen des Fundamentalsatzes der Algebra?

Voraussetzungen:

Sei $P \in \mathbb{C}[x]$ ein Polynom vom Grad $n \geq 1$, d.h. von der Form

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \qquad a_n \neq 0.$$

Erste Aussage:

Zweite Aussage:

(b) Zerlegen Sie das Polynom $P \in \mathbb{C}[x]$, gegeben durch

$$P(z) = z^5 + 10z^3 + 9z,$$

über $\mathbb C$ in Linearfaktoren und geben Sie Ihr Ergebnis an.

Zerlegung in Linearfaktoren

$$P(z) =$$

Sie erhalten Teilpunkte für richtige Linearfaktoren.

- **A 5.** [3.5 Punkte] Sei \mathbb{K} ein Körper und $(V, +, \cdot)$ ein \mathbb{K} -Vektorraum, sowie $U \subseteq V$ eine Teilmenge.
 - (a) Geben Sie **eine** zur Definition von »U ist ein Untervektorraum von V « äquivalente Bedingung des Untervektorraumkriteriums an.

Eine äquivalente Bedingung des Untervektorraumkriteriums

(b) Definieren Sie die lineare Hülle $\mathrm{LH}(U)$ von U.

Definition

LH(U) :=

(c) Sei W ein weiterer \mathbb{K} -Vektorraum. Geben Sie eine Definition für die Linearität einer Abbildung $L:V\to W$ an.

Definition

A 6. [3 Punkte] Bestimmen Sie alle Lösungen des folgenden LGS und geben Sie die Lösungsmenge $L\subseteq\mathbb{Z}^3$ an:

$$3x_1 - 2x_2 - 6x_3 = 10$$

$$6x_1 + x_2 - 2x_3 = 5$$

$$-2x_1 + x_2 + 2x_3 = -3$$

Lösungsmenge

A 7. [4 Punkte] Lösen Sie diese Aufgabe auf Seite 9 der Klausur. Sie dürfen kein eigenes Papier abgeben.

Sei $\mathbb K$ ein Körper, seien V,W $\mathbb K$ -Vektorräume und sei $L:V\to W$ eine lineare Abbildung. Beweisen Sie die Äquivalenz

$$\mathsf{Kern}(L) = \{0\} \iff L \text{ ist injektiv.}$$

Begründen Sie dabei jeden Schritt.

A 8. [4 Punkte] Betrachten Sie $A: \mathbb{R}^3 \to \mathbb{R}^2$, definiert durch

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7z \\ -x - 2y - z \end{pmatrix}, \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

(a) Geben Sie Kern(A) explizit an. Vereinfachen Sie dabei so weit wie möglich.

$$\mathsf{Kern}(A) = \left\{ \begin{array}{c} \\ \end{array} \right.$$

(b) Bestimmen Sie $\dim \operatorname{Kern}(A)$ und $\dim \operatorname{Bild}(A)$.

$$\dim \operatorname{Kern}(A) =$$
 $\dim \operatorname{Bild}(A) =$

(c) (i) A ist injektiv. ... wahr \square falsch \square (ii) A ist surjektiv. ... wahr \square falsch \square Bewertungsmaßstab wie immer: jeweils ± 0.5 oder 0 Punkte. Diese werden mit den anderen

Teilaufgaben (a) und (b) verrechnet.

A 9. [6 Punkte] Sei \mathbb{K} ein Körper und V ein \mathbb{K} -Vektorraum.

(a)	Geben Sie zwei äqui	valente	Bedingungen	dafür a	an, das	s eine	Teilmenge	$M \subseteq V$	linear
	unabhängig ist.								

Eine Bedingung

Eine dazu äquivalente Bedingung

(b) Definieren Sie, wann man eine Teilmenge $B \subseteq V$ Basis (von V) nennt.

Definition

(c) Sei $V=\mathbb{R}^2$ der \mathbb{R} -Vektorraum mit zwei verschiedenen Basen

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \qquad B' = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}.$$

Berechnen Sie zu $v_{B'}=\begin{pmatrix}2\\1\end{pmatrix}$ den Vektor v_B und zu $w_B=\begin{pmatrix}3\\1\end{pmatrix}$ den Vektor $w_{B'}.$

$$v_B = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

$$w_{B'} = \left(\begin{array}{c} \\ \end{array} \right)$$

(d) Sei W ein \mathbb{R} -Vektorraum mit zwei verschiedenen Basen $B,C\subseteq V$. Seien weiter die zur linearen Abbildung $L:V\to V$ gehörende Matrix $M_L^{B,B}$, sowie die Basiswechselmatrix $M_{\mathrm{Id}_V}^{C,B}$ gegeben. Stellen Sie damit $M_L^{C,C}$ dar.

 $M_L^{C,C} =$

Mathematik 1 für inf, swt, msv im WS18/19

SEITE 8 VON 9 TERMIN 26. JANUAR 2019

A 10. $[11 \cdot 0.5 = 5.5 \text{ Punkte}]$ In dieser	Aufgabe sind	keinerlei	Begründungen	gefordert.	Es gilt	der
Bewertungsmaßstab der Kurztests.						

Sei stets \mathbb{K} ein Körper. Seien V und W jeweils \mathbb{K} -Vektorräume und sei $L:V\to W$ linear. Bezeichne $\mathbb{R}^{n \times m}$ den Raum der reellen $n \times m$ -Matrizen und seien (a_n) und (b_n) reelle Folgen. falsch □ **(b)** Sind (a_n) und (b_n) konvergent, dann auch $(a_n - b_n)$ wahr falsch □ (c) Sei $z=r\mathrm{e}^{\mathrm{i}\varphi}$ mit $\frac{3\pi}{4}<\varphi<\frac{5\pi}{4}$ und r>0. Dann ist $\mathrm{Im}\,z>0$ wahr $\ \Box$ falsch □ (d) Sei $z_0 \in \mathbb{C}$. Die Gleichung $z^5 = z_0$ hat mindestens eine reelle Lösung. falsch □ (e) Ein Polynom vom Grad $n \geq 1$ hat über \mathbb{C} höchstens n Nullstellen. \ldots wahr \square falsch □ (f) Sei $M \subseteq V$ mit #M = n, dann ist $\dim LH(M) = n$wahr \square falsch □ falsch □ (h) Bild L ist ein Untervektorraum von W.wahr \square falsch □ (i) Ist Bild L=W, so folgt stets $\operatorname{Kern} L=\{0\}$wahr \square falsch □ (i) Jede Basiswechselmatrix ist invertierbar. wahr falsch □ (k) Ist $A \in \mathbb{R}^{n \times m}$ invertierbar, so ist n = m.wahr falsch □

Z 11. Zusatzaufgabe [1 Punkte] Sei $V_{\mathbb{R}}=\mathbb{C}$ der Vektorraum über \mathbb{R} und $V_{\mathbb{C}}=\mathbb{C}$ der Vektorraum über \mathbb{C} . Geben Sie jeweils eine Basis B von $V_{\mathbb{R}}$ und eine Basis C von $V_{\mathbb{C}}$ an.

$$B = \left\{ \begin{array}{c} \\ \end{array} \right\}$$

$$C = \left\{ \right.$$

PRIV.-DOZ. DR. P. H. LESKY ROBIN LANG, M.Sc.

Mathematik 1 für inf, swt, msv im WS18/19

 $\begin{array}{c} {\rm Seite} \; 9 \; {\rm von} \; 9 \\ {\rm Termin} \; 26. \; {\rm Januar} \; 2019 \end{array}$

Lösung zu A 7.