Übungen zur Schulmathematik

Blatt 2

Aufgabe 5 (Umwandlungen von und in Kettenbrüche)

Stellen Sie die folgenden rationalen Zahlen als Kettenbrüche $[a_0, a_1, \dots, a_n]$ mit $a_0 \in \mathbb{N}_0$ und $a_1, \dots, a_n \in \mathbb{N}$ dar.

a) $\frac{3}{8}$ b) $\frac{17}{39}$ c) $\frac{159}{124}$ d) $\frac{2374}{1593}$

Stellen Sie die folgenden endlichen Kettenbrüche als vollständig gekürzte Brüche dar.

e) [1,2] f) [0,7,4] g) [3,5,2,9] h) [0,8,1,3,2]

Überprüfen Sie jeweils Ihr Ergebnis durch Rückumwandlung.

Aufgabe 6 (Kettenbrüche und modulare Arithmetik)

Sei $m \in \mathbb{N}$. Stellen Sie die folgenden rationalen Zahlen als Kettenbrüche $[a_0, a_1, \dots, a_n]$ mit $a_0 \in \mathbb{N}_0$ und $a_1, \dots, a_n \in \mathbb{N}$ dar.

a) $\frac{m+1}{m}$ b) $\frac{m+2}{m}$ c) $\frac{m+3}{m}$ d) $\frac{m+4}{m}$

Tipp: Führen Sie dazu geeignete Fallunterscheidungen durch.

Aufgabe 7 (Fibonacci-Zahlen und Kettenbruchdarstellungen)

Das n-te Glied der durch $F_1 := F_2 := 1$ und $F_n := F_{n-1} + F_{n-2}$ für $n \ge 3$ rekursiv definierten Folge heißt n-te Fibonacci-Zahl. Schreiben Sie $\frac{F_{n+1}}{F_n}$ als Kettenbruch.

Aufgabe 8 (Wurzeln als periodische Kettenbrüche)

Finden Sie für folgende reellen Zahlen Darstellungen als periodische Kettenbrüche. Beweisen Sie anschließend, dass die von Ihnen gefundenen Darstellungen die gewünschten reellen Zahlen repräsentieren.

a) $\sqrt{2}$ b) $\sqrt{3}$ c) $\sqrt{5}$ d) $\sqrt{7}$