13.Übungsblatt zur Algebra

Anne Henke, Sam Thelin, WS 2018

- 1. (Zum Votieren.)
 - (a) Welche der folgenden Körpererweiterungen sind endlich, welche sind algebraisch:
 - i. $\mathbb{Q}(\{3^{\frac{1}{n}}: 1 \le n \le 7\})/\mathbb{Q};$
 - ii. $\mathbb{Q}(\{3^{\frac{1}{n}}:n\in\mathbb{N}\})/\mathbb{Q}$

(*Hinweis:* Zeigen Sie, dass $\bigcup_{k=1}^{\infty} \mathbb{Q}(\{3^{\frac{1}{n}}: 1 \leq n \leq k\})$ ein Körper ist.);

iii. $\mathbb{R}/\mathbb{Q}(\{3^{\frac{1}{n}}:n\in\mathbb{N}\})$?

Begründen Sie jeweils Ihre Antwort.

- (b) Angenommen L/K ist eine algebraische Körpererweiterung. Sei R ein Ring mit $K\subseteq R\subseteq L$. Zeigen Sie, dass R ein Körper ist.
- 2. (Schriftlich, 11 Punkte.) Bestimmen Sie einen Zerfällungskörper L über $\mathbb Q$ sowie $[L:\mathbb Q]$ für die folgenden Polynome:

$$p = X^3 - 1$$
, $q = X^3 - 2$, $r = X^6 - 3X^3 + 2$, $s = X^4 - 2X^2 - 35$.

Begründen Sie jeweils Ihre Antwort.

- 3. (Zum Votieren.) Sei $f = X^3 3X 1$.
 - (a) Zeigen Sie: f ist unzerlegbar über \mathbb{Q} . (Hinweis: Vgl. z.B. Aufgabe 5(b) auf Blatt 12.)
 - (b) Sei $\alpha \in \mathbb{C}$ eine Nullstelle von f. Zeigen Sie, dass $2 \alpha^2$ eine Nullstelle von f ist.
 - (c) Bestimmen Sie den Zerfällungskörper von f über \mathbb{Q} . Begründen Sie Ihre Antwort.
- 4. (Schriftlich, 11 Punkte.) Sei p eine Primzahl und sei n eine natürliche Zahl. Sei \mathbb{F}_{p^n} der Körper mit p^n Elementen.
 - (a) Sei $K \leq \mathbb{F}_{p^n}$ ein Teilkörper von \mathbb{F}_{p^n} . Zeigen Sie, dass $|K| = p^d$ ist mit $d \mid n$.

Sei jetzt d eine natürliche Zahl mit $d \mid n$.

- (b) Zeigen Sie, dass $p^d 1 \mid p^n 1$ in \mathbb{Z} gilt, und dass $X^{p^d 1} 1 \mid X^{p^n 1} 1$ in $\mathbb{Z}_p[X]$ gilt. Folgern Sie, durch Betrachtung des Polynoms $X^{p^d} X \in \mathbb{Z}_p[X]$, dass \mathbb{F}_{p^n} einen Teilkörper der Ordnung p^d hat.
- (c) Zeigen Sie, dass \mathbb{F}_{p^n} genau einen Teilkörper der Ordnung p^d hat.
- (d) Skizzieren Sie den Teilkörperverband von $\mathbb{F}_{p^{12}}$.
- 5. (Zum Votieren.) Sei $\zeta_8 = e^{i\pi/4}$.
 - (a) Zeigen Sie, dass $\zeta_8^2=i$ und $\zeta_8+\zeta_8^{-1}=\sqrt{2}$ ist.
 - (b) Sei $p = X^4 + 1$.
 - i. Zeigen Sie, dass $K = \mathbb{Q}(\zeta_8)$ ein Zerfällungskörper für p über \mathbb{Q} ist. Zeigen Sie auch, dass $\mathbb{Q}(\zeta_8) = \mathbb{Q}(\sqrt{2}, i)$ ist und bestimmen Sie $[K : \mathbb{Q}]$.
 - ii. Sei $\sigma \in \text{Aut}(K/\mathbb{Q})$. Zeigen Sie, dass $\sigma(\sqrt{2}) \in {\sqrt{2}, -\sqrt{2}}$ und $\sigma(i) \in {i, -i}$ ist. Folgern Sie, dass $|\text{Aut}(K/\mathbb{Q})| \leq 4$ ist.
 - iii. Zeigen Sie, dass es $\sigma, \tau \in Aut(K/\mathbb{Q})$ gibt mit

$$\sigma(\sqrt{2}) = -\sqrt{2}, \quad \sigma(i) = i \quad \text{und} \quad \tau(\sqrt{2}) = \sqrt{2}, \quad \tau(i) = -i.$$

Folgern Sie, dass $|\operatorname{Aut}(K/\mathbb{Q})|=4$ ist, und bestimmen Sie den Isomorphietyp der Gruppe $\operatorname{Aut}(K/\mathbb{Q}).$

(c) Sei $q = (X^4 + 1)(X^4 - 2)$. Zeigen Sie, dass $L = \mathbb{Q}(\zeta_8, \sqrt[4]{2})$ ein Zerfällungskörper für q über \mathbb{Q} ist. Bestimmen Sie $[L:\mathbb{Q}]$ mit Hilfe von Teil (a), und zeigen Sie, dass $|\operatorname{Aut}(L/\mathbb{Q})| \leq 8$ ist.

6. (Zum Selbststudium.)

- (a) Sei $f = X^4 + 3X + 4$.
 - i. Zeigen Sie: Ist $a \in \mathbb{Z}$ mit f(a) = 0, dann gilt $a \mid 4$. Folgern Sie, dass f keine Nullstelle in \mathbb{Z} hat.
 - ii. Zeigen Sie, dass die Gleichung $f = (X^2 + aX + b)(X^2 + cX + d)$ mit $a, b, c, d \in \mathbb{Z}$ keine Lösung hat. Folgern Sie, dass f unzerlegbar über \mathbb{Z} und auch über \mathbb{Q} ist.
 - iii. Zeigen Sie, dass f über $\mathbb{Q}(\sqrt[3]{2})$ unzerlegbar ist. (*Hinweis:* Betrachten Sie den Grad $[\mathbb{Q}(\sqrt[3]{2})(\alpha):\mathbb{Q}(\sqrt[3]{2})]$, wobei α eine Nullstelle von f in \mathbb{C} ist.)
- (b) Seien $f,g\in\mathbb{Q}[X]$ unzerlegbare Polynome und $\alpha,\beta\in\mathbb{C}$ mit $f(\alpha)=0=g(\beta)$. Zeigen Sie: f ist genau dann unzerlegbar über $\mathbb{Q}(\beta)$, wenn g unzerlegbar über $\mathbb{Q}(\alpha)$ ist. (Hinweis: Betrachten Sie $[\mathbb{Q}(\alpha)(\beta):\mathbb{Q}]=[\mathbb{Q}(\beta)(\alpha):\mathbb{Q}]$ und benutzen Sie die Gradformel für Körpererweiterungen.)