${\bf Analysis~3}$ Vorlesung im Wintersemester 2017/2018

Vortragsübungsblatt 8

Aufgabe 8.1 Sei $A \in \mathbb{R}^{3\times 3}$ und $F : \mathbb{R}^3 \to \mathbb{R}^3$ ein lineares Vektorfeld mit F(x) = Ax.

- a) Berechnen Sie $\operatorname{div} F$ und $\operatorname{rot} F$.
- **b)** Bestimmen Sie zwei Matrizen $B, C \in \mathbb{R}^{3\times 3}$, so dass

$$F(x) = Bx + Cx$$
, für alle $x \in \mathbb{R}^3$,

mit Bx quellenfrei (d.h. div(Bx) = 0) und Cx wirbelfrei (d.h. rot(Cx) = 0).

c) Bestimmen Sie ein Vektorfeld $V: \mathbb{R}^3 \to \mathbb{R}^3$ und eine Funktion $\Phi: \mathbb{R}^3 \to \mathbb{R}$, so dass

$$F(x) = \text{rot}V(x) + \text{grad}\Phi(x),$$
 für alle $x \in \mathbb{R}^3$.

Aufgabe 8.2 Sei $\Omega \subset \mathbb{R}^n$ offen und $u_n : \Omega \to \mathbb{R}$ eine Folge von harmonischen Funktionen, welche lokal gleichmäßig gegen eine Funktion $u : \Omega \to \mathbb{R}$ konvergiert. D.h. für jede kompakte Teilmenge $K \subset \Omega$ gilt

$$\sup_{x \in K} |u(x) - u_n(x)| \to 0 \quad (n \to \infty).$$

Zeigen Sie, dass die Grenzfunktion $u:\Omega\to\mathbb{R}$ harmonisch ist.

Aufgabe 8.3 (Harnack-Ungleichung) Sei $\Omega \subset \mathbb{R}^n$ offen und $u:\Omega \to \mathbb{R}$ eine harmonische Funktion in Ω mit $u(x) \geq 0$ für alle $x \in \Omega$. Sei außeredem $V \subset \Omega$ eine offene, zusammenhängende Teilmenge mit \overline{V} kompakt und $\overline{V} \subset \Omega$. Zeigen Sie, dass dann eine positive Konstante C = C(V) existiert (welche nur von V abhängt!), so dass

$$\sup_{x \in V} u(x) \le C \inf_{x \in V} u(x).$$

Bemerkung: Die Aussage ist, dass man für gegebenes V eine Konstante C finden kann, so dass die Ungleichung für alle nichtnegativen, harmonischen Funktionen in Ω gilt.

Alle Aufgaben auf diesem Blatt werden am

Dienstag, den 19.12.2017

in der Vortragsübung besprochen.