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Exercise 1.1.

Let S be a nonempty set and endow the vector space
B(S,R):={f: S — R | f is bounded},
with the uniform metric d: B(S,R) x B(S,R) — R given by

doo(fa g) ‘= Sup |f(.%’) - g(.’L’)‘

€S

(a) Show that d., defines indeed a metric on the vector space B(S,R).
(b) Prove that B(S,R) is complete with respect to du.

(c) Suppose (S,d) is a metric space and consider the linear subspace CP(S,R) of
B(S,R), consisting of continuous and bounded functions f: S — R. Prove that
CY(S,R) is closed in B(S,R).

(d) Is CP(S,R) complete with respect to de? Motivate your answer.

Exercise 1.2.

Let (M,d) be a metric space. Let x € M and r > 0. It is not true in general that the
closure of the open ball B (r) equals the set {y € M | d(z,y) < r}. Show this by giving

an example.

Exercise 1.3.
Let a,b € R with a < b. Let {f,} be a sequence in C([a,b],R) which is pointwise
bounded, that is, for every x € [a,b] there exists M, > 0 such that |f,(z)| < M, for
all n € N. Prove that there exists a subinterval of [a, b] on which the f, are uniformly
bounded, that is, there exist ¢,d € [a,b] with ¢ < d and M > 0 such that |f,(z)| < M
for all € [a,b] and n € N.

Hint: apply Baire’s Theorem.

Exercise 1.4.
Which of the following formulas define a metric? Give for each case a proof or a coun-
terexample.

(a) d(f,g9) = Es[tl]i) ; ||| f(x) — g(z)| on B(]—1,1],R) (see exercise 1.1.).

1
(b) d(f,9) :/_1 2|1/ (z) — g()|dz on C([-1, 1], R).

1
(c) d(f,9) =/1 2| 1f'(z) — ¢'(z)|dz on C*([-1,1],R).
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Exercise 1.5.
Consider the scalar Riccati equation
d
e a(t)u+ b(t),

dt (1)
u(0) = uo.

where a,b: R — R are continuous functions and ug, € > 0 are real numbers.

(a) Prove that (1) has a unique local solution, i.e. there exists ¢y > 0 such that (1) has
a unique solution u € C1([0, ), R).

Hint: apply the Picard-Lindel6f theorem.

(b) Show that there exists a,b: R — R such that for each € > 0 the local solution
to (1) is non-global, i.e. the solution does not lie in C'1([0,c0), R).

(c) Prove that if u € C%([0, 00), R) solves the integral equation
t t t
u(t) = / els alrdr (eu(s)* +b(s)) ds + eJo alr)dry, t € [0,00), (2)
0

then u is a (global) solution in C'*([0, ), R) to (1).

(d) Suppose b: R — R is bounded and a: R — R is bounded from above by a negative
constant, i.e. there exist constants C' > 0 and ag < 0 such that |b(t)] < C and
a(t) < ag for all t € R. Prove that there exists ¢y > 0 such that (2) has a global
solution in CP ([0, 00),R) for each € € (0, ).

Hint: show that the operator F': CP([0,00),R) — CP([0,00),R), given by

t t t
F(u)(t) = /O els M (ey(5)2 4 b(s)) ds + elo “Oryy ¢ e [0,00),

restricts to a contraction on a closed ball By(p) C CP([0,0),R) for some p > 0.

Notation: Let k > 0 and m > 0 be integers and let Q C R¥. We denote by C™(Q, R) the
vector space of continuous functions f: Q — R, which are m times continuously differentiable.
Moreover, CP(£2, R) is the vector space of bounded and continuous functions f: Q — R.
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