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Gruppenübungsblatt 1 (Bonus)

Exercise 1.1.

Let S be a nonempty set and endow the vector space

B(S,R) := {f : S → R | f is bounded} ,

with the uniform metric d∞ : B(S,R)×B(S,R)→ R given by

d∞(f, g) := sup
x∈S
|f(x)− g(x)|.

(a) Show that d∞ defines indeed a metric on the vector space B(S,R).

(b) Prove that B(S,R) is complete with respect to d∞.

(c) Suppose (S, d) is a metric space and consider the linear subspace C0
b (S,R) of

B(S,R), consisting of continuous and bounded functions f : S → R. Prove that

C0
b (S,R) is closed in B(S,R).

(d) Is C0
b (S,R) complete with respect to d∞? Motivate your answer.

Exercise 1.2.

Let (M,d) be a metric space. Let x ∈ M and r > 0. It is not true in general that the

closure of the open ball Bx(r) equals the set {y ∈M | d(x, y) ≤ r}. Show this by giving

an example.

Exercise 1.3.

Let a, b ∈ R with a < b. Let {fn} be a sequence in C([a, b],R) which is pointwise

bounded, that is, for every x ∈ [a, b] there exists Mx > 0 such that |fn(x)| ≤ Mx for

all n ∈ N. Prove that there exists a subinterval of [a, b] on which the fn are uniformly

bounded, that is, there exist c, d ∈ [a, b] with c < d and M > 0 such that |fn(x)| ≤ M

for all x ∈ [a, b] and n ∈ N.

Hint: apply Baire’s Theorem.

Exercise 1.4.

Which of the following formulas define a metric? Give for each case a proof or a coun-

terexample.

(a) d(f, g) = sup
x∈[−1,1]

|x||f(x)− g(x)| on B([−1, 1],R) (see exercise 1.1.).

(b) d(f, g) =

∫ 1

−1
|x| |f(x)− g(x)|dx on C0([−1, 1],R).

(c) d(f, g) =

∫ 1

−1
|x| |f ′(x)− g′(x)|dx on C1([−1, 1],R).
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Exercise 1.5.

Consider the scalar Riccati equation

du

dt
= εu2 + a(t)u+ b(t),

u(0) = u0.
(1)

where a, b : R→ R are continuous functions and u0, ε > 0 are real numbers.

(a) Prove that (1) has a unique local solution, i.e. there exists t0 > 0 such that (1) has

a unique solution u ∈ C1([0, t0),R).

Hint: apply the Picard-Lindelöf theorem.

(b) Show that there exists a, b : R → R such that for each ε > 0 the local solution

to (1) is non-global, i.e. the solution does not lie in C1([0,∞),R).

(c) Prove that if u ∈ C0([0,∞),R) solves the integral equation

u(t) =

∫ t

0
e
∫ t
s a(r)dr

(
εu(s)2 + b(s)

)
ds+ e

∫ t
0 a(r)dru0, t ∈ [0,∞), (2)

then u is a (global) solution in C1([0,∞),R) to (1).

(d) Suppose b : R→ R is bounded and a : R→ R is bounded from above by a negative

constant, i.e. there exist constants C > 0 and a0 < 0 such that |b(t)| ≤ C and

a(t) ≤ a0 for all t ∈ R. Prove that there exists ε0 > 0 such that (2) has a global

solution in C0
b ([0,∞),R) for each ε ∈ (0, ε0).

Hint: show that the operator F : C0
b ([0,∞),R)→ C0

b ([0,∞),R), given by

F (u)(t) =

∫ t

0
e
∫ t
s a(r)dr

(
εu(s)2 + b(s)

)
ds+ e

∫ t
0 a(r)dru0, t ∈ [0,∞),

restricts to a contraction on a closed ball B0(ρ) ⊂ C0
b ([0,∞),R) for some ρ > 0.

Notation: Let k > 0 and m ≥ 0 be integers and let Ω ⊂ Rk. We denote by Cm(Ω,R) the

vector space of continuous functions f : Ω→ R, which are m times continuously differentiable.

Moreover, C0
b (Ω,R) is the vector space of bounded and continuous functions f : Ω→ R.
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