

Funktionalanalysis (WS 2018/19) Gruppenübungsblatt 1 (Bonus)

Exercise 1.1.

Let S be a nonempty set and endow the vector space

$$B(S, \mathbb{R}) := \{ f \colon S \to \mathbb{R} \mid f \text{ is bounded} \},\$$

with the uniform metric $d_{\infty} \colon B(S, \mathbb{R}) \times B(S, \mathbb{R}) \to \mathbb{R}$ given by

$$d_{\infty}(f,g) := \sup_{x \in S} |f(x) - g(x)|$$

- (a) Show that d_{∞} defines indeed a metric on the vector space $B(S, \mathbb{R})$.
- (b) Prove that $B(S, \mathbb{R})$ is complete with respect to d_{∞} .
- (c) Suppose (S, d) is a metric space and consider the linear subspace $C_b^0(S, \mathbb{R})$ of $B(S, \mathbb{R})$, consisting of continuous and bounded functions $f: S \to \mathbb{R}$. Prove that $C_b^0(S, \mathbb{R})$ is closed in $B(S, \mathbb{R})$.
- (d) Is $C_h^0(S, \mathbb{R})$ complete with respect to d_∞ ? Motivate your answer.

Exercise 1.2.

Let (M, d) be a metric space. Let $x \in M$ and r > 0. It is not true in general that the closure of the open ball $B_x(r)$ equals the set $\{y \in M \mid d(x, y) \leq r\}$. Show this by giving an example.

Exercise 1.3.

Let $a, b \in \mathbb{R}$ with a < b. Let $\{f_n\}$ be a sequence in $C([a, b], \mathbb{R})$ which is pointwise bounded, that is, for every $x \in [a, b]$ there exists $M_x > 0$ such that $|f_n(x)| \leq M_x$ for all $n \in \mathbb{N}$. Prove that there exists a subinterval of [a, b] on which the f_n are uniformly bounded, that is, there exist $c, d \in [a, b]$ with c < d and M > 0 such that $|f_n(x)| \leq M$ for all $x \in [a, b]$ and $n \in \mathbb{N}$.

Hint: apply Baire's Theorem.

Exercise 1.4.

Which of the following formulas define a metric? Give for each case a proof or a counterexample.

(a)
$$d(f,g) = \sup_{x \in [-1,1]} |x| | f(x) - g(x) |$$
 on $B([-1,1], \mathbb{R})$ (see exercise 1.1.).
(b) $d(f,g) = \int_{-1}^{1} |x| | f(x) - g(x) | dx$ on $C^{0}([-1,1], \mathbb{R})$.
(c) $d(f,g) = \int_{-1}^{1} |x| | f'(x) - g'(x) | dx$ on $C^{1}([-1,1], \mathbb{R})$.

Exercise 1.5.

Consider the scalar Riccati equation

$$\frac{du}{dt} = \epsilon u^2 + a(t)u + b(t),$$

$$u(0) = u_0.$$
(1)

where $a, b \colon \mathbb{R} \to \mathbb{R}$ are continuous functions and $u_0, \epsilon > 0$ are real numbers.

- (a) Prove that (1) has a unique local solution, i.e. there exists t₀ > 0 such that (1) has a unique solution u ∈ C¹([0, t₀), ℝ). *Hint:* apply the Picard-Lindelöf theorem.
- (b) Show that there exists $a, b: \mathbb{R} \to \mathbb{R}$ such that for each $\epsilon > 0$ the local solution to (1) is non-global, i.e. the solution does not lie in $C^1([0,\infty),\mathbb{R})$.
- (c) Prove that if $u \in C^0([0,\infty),\mathbb{R})$ solves the integral equation

$$u(t) = \int_0^t e^{\int_s^t a(r) dr} \left(\epsilon u(s)^2 + b(s) \right) ds + e^{\int_0^t a(r) dr} u_0, \qquad t \in [0, \infty),$$
(2)

then u is a (global) solution in $C^1([0,\infty),\mathbb{R})$ to (1).

(d) Suppose $b: \mathbb{R} \to \mathbb{R}$ is bounded and $a: \mathbb{R} \to \mathbb{R}$ is bounded from above by a negative constant, i.e. there exist constants C > 0 and $a_0 < 0$ such that $|b(t)| \leq C$ and $a(t) \leq a_0$ for all $t \in \mathbb{R}$. Prove that there exists $\epsilon_0 > 0$ such that (2) has a global solution in $C_b^0([0,\infty),\mathbb{R})$ for each $\epsilon \in (0,\epsilon_0)$.

Hint: show that the operator $F: C_b^0([0,\infty),\mathbb{R}) \to C_b^0([0,\infty),\mathbb{R})$, given by

$$F(u)(t) = \int_0^t e^{\int_s^t a(r) dr} \left(\epsilon u(s)^2 + b(s) \right) ds + e^{\int_0^t a(r) dr} u_0, \qquad t \in [0, \infty),$$

restricts to a contraction on a closed ball $\overline{B_0(\rho)} \subset C_b^0([0,\infty),\mathbb{R})$ for some $\rho > 0$.

Notation: Let k > 0 and $m \ge 0$ be integers and let $\Omega \subset \mathbb{R}^k$. We denote by $C^m(\Omega, \mathbb{R})$ the vector space of continuous functions $f: \Omega \to \mathbb{R}$, which are m times continuously differentiable. Moreover, $C_b^0(\Omega, \mathbb{R})$ is the vector space of bounded and continuous functions $f: \Omega \to \mathbb{R}$.

Dieses Gruppenübungsblatt wird am Mittwoch, den 17.10.2018 besprochen.