Hyperbolas defined by
quadratic equations
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Playing with the equations

The following picture (also available as an interactive apple shows the two hyperbolas that are
defined by the equations ax? — cy? = 1 (that is the red one) and —ax? + cy? = 1 (the dark violet
one), respectively.

Also shown in the picture are the points with coordinates u = 1/y/a and v = 1//c on the coordi-
nate axes (so our equations become (£)? — (£)* = L and —(£)* + (£)* = 1, respectively), and the
pair of lines solving the equation az? — cy? = 0 (that is, (+x + 1y)(+2 — 1y) = 0); these lines are
the asymptotes for both of the hyperbolas.
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In the interactive applet, you may adjust the values of a and ¢ by moving the respective points in
the applet with your mouse - just be sure to keep a to the right and c to the left of the black point
marked 0. The hyperbolas and their asymptotes will be changed accordingly.

This picture, and the applet itself, were produced with Cinderella.

! You find that interactive version using the address
https://info.mathematik.uni-stuttgart.de/HM-Stroppel-Material/Hyperbolas/
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A family of hyperbolas

The following picture shows many hyperbolas in one cartesian coordinate system; these hyperbolas
may be described as curves consisting of the points solving an equation of the form ¢(z,y) = d
for different values of d (namely, d € {0.1,0.25,0.5,1,2,4,6,8,10} giving those hyperbolas that
meet the horizontal axis, and d € {—0.1, —0.25, —0.5, —1, =2, —4, —6, —8, —10} giving those that
meet the vertical axis) while ¢(z,y) = x* — 3y? in each case.

Instead of changing the value d, you may also keep d fixed and change the form ¢ (just divide the
whole equation by d).

The value d = 0 is special; it does not give the equation for a hyperbola but it gives the equation
q(z,y) = 0 for a pair of lines (colored green in our picture). Actually, these lines form the so-called
asymptotes for each hyperbola with equation ¢(x, y) = d (i.e., with the same quadratic form ¢, and
arbitrary constant d # 0). These asymptotes very nicely gives us the behaviour of the hyperbolas
far away from the origin: the hyperbolas will approximate these lines.




We remark that each one of
these hyperbolas may also be
interpreted as a level set of
the function

¢R? = R: (z,y) = 2°—3y° .

The picture on the right gives
an impression of that graph;
the black lines indicate the
level sets

{(z,y) eR* | q(z,y) = 2n}

for each integer n within the
range —H < d < 5.

The surface obtained here as
the graph of ¢ is known as a
hyperbolic paraboloid.

These pictures were produced using MAPLE®.



