Name, Vorname: Matrikel-Nummer:

Studiengang:

Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Punkte	/1	/4	/2	/6	/4	/4	/4	/3	/3	/31

Bitte beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Werte der Winkelfunktionen könnten hilfreich sein:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Viel Erfolg!

Aufgabe 1 (*1 Punkt*) Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an.

Name des Tutors/der Tutorin:

Gruppennr.:

Aufgabe 2 (4 Punkte) Konstruieren Sie zu den Vektoren

$$v_1 = (-1, 1, 1)^{\mathsf{T}},$$

$$v_2 = (2, 1, -2)^{\mathsf{T}},$$

$$v_3 = (1,3,1)^{\mathsf{T}}$$

eine Orthonormalbasis $F: f_1, f_2, f_3$ von \mathbb{R}^3 mit $L(v_1) = L(f_1), L(v_1, v_2) = L(f_1, f_2)$ und $L(v_1, v_2, v_3) = L(f_1, f_2, f_3)$.

$$f_1 = \begin{array}{c} \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$

$$f_2 = \begin{bmatrix} \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \end{bmatrix}$$

$$f_3 = \begin{pmatrix} 1 \\ \sqrt{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Aufgabe 3 (2 Punkte) Es ist die affine Abbildung $\alpha: \mathbb{R}^3 \to \mathbb{R}^3: v \mapsto Av + t$ gegeben durch

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 0 & -1 \\ 6 & 1 & -1 \end{pmatrix} \quad \text{und} \quad t = \begin{pmatrix} 1 \\ 2 \\ -7 \end{pmatrix}$$

Weiter ist die Gerade

$$g := \left\{ \begin{pmatrix} -1\\3\\2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-3\\2 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$$

gegeben. Bestimmen Sie

$$\alpha(g) = \left\{ \begin{pmatrix} 11 \\ -2 \\ -12 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 2 \\ 7 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$$

Aufgabe 4 (6 Punkte) Gegeben ist die Matrix

$$A = \left(\begin{array}{rrr} 1 & -1 & 2 \\ -1 & 1 & 2 \\ 2 & 2 & -2 \end{array} \right).$$

- (a) Verifizieren Sie, dass $v_1 = (2, 0, 1)^{\mathsf{T}}$ ein Eigenvektor von A ist. Wie lautet der zugehörige Eigenwert λ_1 ? $\lambda_1 = \boxed{2}$
- (b) Der zu λ_1 gehörige Eigenraum $V(\lambda_1)$ ist zweidimensional. Geben Sie eine orthogonale Basis von $V(\lambda_1)$ an:

$$v_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -5 \\ -2 \end{pmatrix}.$$

(c) Bestimmen Sie eine Orthonormalbasis von \mathbb{R}^3 aus Eigenvektoren von A:

$$\begin{bmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix} \end{bmatrix}, \qquad \begin{bmatrix} \frac{1}{\sqrt{30}} \begin{pmatrix} 1\\-5\\-2 \end{pmatrix}, \qquad \begin{bmatrix} \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\-1\\2 \end{pmatrix} \end{bmatrix}.$$

Geben Sie die zugehörigen Eigenwerte an (achten Sie dabei auf korrekte Zuordnung):

$$oxed{2}$$
 , $oxed{2}$, $oxed{-4}$.

Aufgabe 5 (4 Punkte) Gegeben sind die Punkte P = (-1, 1) und Q = (-1, -4) sowie die Koordinatensysteme

$$\mathbb{F} = \left(P; \begin{pmatrix} -4 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ -2 \end{pmatrix}\right) \quad \text{und} \quad \mathbb{G} = \left(Q; \begin{pmatrix} 2 \\ -3 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \end{pmatrix}\right)$$

Bestimmen Sie die Koordinatentransformation, welche von \mathbb{F} -Koordinaten auf Standardkoordinaten \mathbb{E} umrechnet, sowie die Koordinatentransformation von \mathbb{E} auf \mathbb{G} .

$${}_{\mathbb{E}}\kappa_{\mathbb{F}}(v) = \left[\begin{array}{c|c} -4 & 3 \\ 4 & -2 \end{array} \right] \quad v + \left[\begin{array}{c|c} -1 \\ 1 \end{array} \right] \qquad {}_{\mathbb{G}}\kappa_{\mathbb{E}}(v) = \left[\begin{array}{c|c} 4/5 & 1/5 \\ 3/5 & 2/5 \end{array} \right] \quad v + \left[\begin{array}{c|c} 8/5 \\ 11/5 \end{array} \right]$$

Aufgabe 6 (4 Punkte) Bestimmen Sie die Eigenwerte der gegebenen Matrizen und entscheiden Sie, ob die Matrizen diagonalisierbar sind.

	Eigenwerte	diagonalisierbar
$ \left(\begin{array}{cc} -1 & 5 \\ -4 & -5 \end{array} \right) $	-3+4i, $-3-4i$	ja
$\left(\begin{array}{cc} -1 & 3 \\ 2 & 4 \end{array}\right)$	-2, 5	ja
$ \left(\begin{array}{ccc} -1/3 & 1/3 \\ -1/3 & -1 \end{array}\right) $	$-\frac{2}{3}$	nein

Aufgabe 7 (4 Punkte) Bestimmen Sie zu den folgenden Quadriken jeweils eine euklidische Normalform:

$$Q_1 = \left\{ x \in \mathbb{R}^3 \mid 2x_1^2 + x_2^2 + x_3^2 + 12x_2x_3 + 11 = 0 \right\}$$

$$\frac{2}{11}x_1^2 - \frac{5}{11}x_2^2 + \frac{7}{11}x_3^2 + 1 = 0$$

$$Q_2 = \left\{ x \in \mathbb{R}^3 \mid x_1^2 + 2x_2^2 - x_3^2 + 4x_2 - 8x_3 = 0 \right\}$$

$$\frac{1}{14}y_1^2 + \frac{1}{7}y_2^2 - \frac{1}{14}y_3^2 + 1 = 0$$

Aufgabe 8 (3 Punkte) Entscheiden Sie, ob die folgenden Folgen beschränkt, monoton oder konvergent sind. Tragen Sie alle Ihre Entscheidungen in den Kasten ein.

	Eigenschaften		
$a_n = \frac{1}{n^2 + 5}$	beschränkt, monoton, konvergent		
$b_0 = 5, b_n = -\frac{1}{2}b_{n-1}$	beschränkt, nicht monoton, konvergent		
$a_n = 2^n$	unbeschränkt, monoton, divergent		

Aufgabe 9 (3 Punkte) Berechnen Sie die Grenzwerte der gegebenen Folgen. Falls die Folge nicht konvergiert, tragen Sie "divergent" ein.

$\left(\frac{2+n^2}{3n^2-11}\right)_{n\in\mathbb{N}}$	$\left(2^{-n}n!\right)_{n\in\mathbb{N}}$	$\left(\sum_{k=0}^{n} \frac{3^k}{2^k}\right)_{n \in \mathbb{N}}$
$\frac{1}{3}$	divergent	divergent