Matrikel-Nummer: Studiengang:

Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Punkte	/1	/3	/4	/3	/5	/8	/4	/2	/2	/32

Bitte beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Werte der Winkelfunktionen könnten hilfreich sein:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Viel Erfolq!

 ${\bf Aufgabe\ 1}\ (1\ Punkt)$ Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an.

Name des Tutors/der Tutorin:

Gruppennr.:

Aufgabe 2 (3 Punkte) Gegeben sind die Vektoren

$$b_1 = \begin{pmatrix} 3 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 5 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 3 \\ -4 \\ 2 \\ 5 \end{pmatrix}.$$

Bestimmen Sie ein Orthonormalsystem f_1, f_2, f_3 mit $f_1 \in L(b_1), f_2 \in L(b_1, b_2), f_3 \in L(b_1, b_2, b_3)$.

 $f_1 =$

 $f_2 =$

 $f_3 =$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 auf $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ auf $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$

abbildet.

$$\alpha \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon v \mapsto$$

$$v +$$

Aufgabe 4 (3 Punkte) Gegeben ist das Koordinatensystem

$$\mathbb{F} = \left(\left(\begin{array}{c} 2 \\ 1 \end{array} \right); \left(\begin{array}{c} -3 \\ -1 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right).$$

Bestimmen Sie die Koordinatentransformation von Standard- auf F-Koordinaten und umgekehrt.

$${}_{\mathbb{E}} \kappa_{\mathbb{F}} \colon v \mapsto \boxed{ \qquad \qquad } v + \boxed{ \qquad \qquad } , \quad {}_{\mathbb{F}} \kappa_{\mathbb{E}} \colon v \mapsto \boxed{ \qquad } v + \boxed{ \qquad }$$

Aufgabe 5 (5 Punkte) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix

$$\begin{pmatrix} 4 & -4 \\ 13 & -4 \end{pmatrix}$$

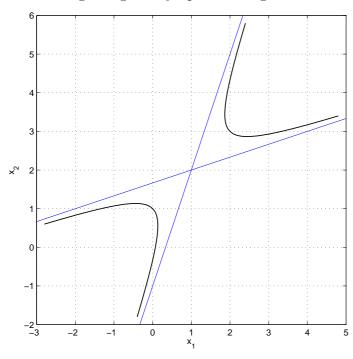
Eigenwerte:
$$\lambda_1 =$$
 , $\lambda_2 =$

Eigenräume:
$$V\left(\lambda_{1}\right)=$$
 , $V\left(\lambda_{2}\right)=$

In der Abbildung ist die Quadrik

$$Q = \{x \in \mathbb{R}^2 \mid -3x_1^2 + 10x_1x_2 - 3x_2^2 - 14x_1 + 2x_2 + 1 = 0\}$$

mit den zugehörigen Asymptoten dargestellt:

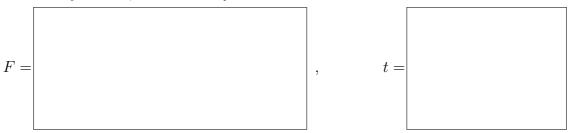


	Kegelige Quadrik ,	Mittelpunktsquadrik ,	Parabolische Quadrik
Geb	en Sie eine affine Normalfo	orm der Quadrik an.	
Geb	en Sie eine euklidische No	rmalform der Quadrik an.	
Geb	en Sie ein kartesisches Koo	ordinatensystem \mathbb{F} an, in dem of	die Quadrik diese euklidische Normalform
besi	tzt und zeichnen Sie dieses	s Koordinatensystem in die Ab	bildung ein.
1			

Gegeben ist die Quadrik

$$Q = \{x \in \mathbb{R}^3 \mid 2x_1^2 + 3x_2^2 - x_3^2 + 6x_2 + 4x_3 = 0\} .$$

Bestimmen Sie F und t für die Koordinatentransformation $_{\mathbb{F}}\kappa_{\mathbb{E}} \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon v \mapsto Fv + t$ in ein kartesisches Koordinatensystem \mathbb{F} , in dem die Quadrik euklidische Normalform besitzt.



Geben Sie die Gestalt der Quadrik an:

Aufgabe 8 (2 Punkte)

Gegeben sei eine Matrix $A \in \mathbb{R}^{n \times n}$ für ein $n \in \mathbb{N}$. Sei $\lambda \in \mathbb{R}$ ein Eigenwert von A zum Eigenvektor v. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor v an.

(a)
$$A^8$$

Eigenwert

rt:			

Sei $B \in \mathbb{R}^{n \times n}$ zu A konjugiert, d.h. es gibt eine reguläre Matrix T mit $B = T^{-1}AT$. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor $T^{-1}v$ an.

(b) 5B

Eigenwert

3	Eigenwert:	

Aufgabe 9 (2 Punkte)

	Monoton	Beschränkt
$a_n = 3 + 2^{-2n}$		
$b_n = (-1)^n \frac{2}{n}$		
$c_n = -(3n+4)$		
$d_n = \frac{7}{3}\cos\left(\frac{3\pi n}{2}\right)$		

Matrikel-Nummer: Studiengang:

Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Punkte	/1	/3	/4	/3	/5	/8	/4	/2	/2	/32

Bitte beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Werte der Winkelfunktionen könnten hilfreich sein:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Viel Erfolq!

 ${\bf Aufgabe\ 1}\ (1\ Punkt)$ Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an.

Name des Tutors/der Tutorin:

Gruppennr.:

:

Aufgabe 2 (3 Punkte) Gegeben sind die Vektoren

$$b_1 = \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 0 \\ 2 \\ 3 \\ 2 \end{pmatrix}, \quad b_3 = \begin{pmatrix} -5 \\ 3 \\ 3 \\ 2 \end{pmatrix}.$$

Bestimmen Sie ein Orthonormalsystem f_1, f_2, f_3 mit $f_1 \in L(b_1), f_2 \in L(b_1, b_2), f_3 \in L(b_1, b_2, b_3)$.

 $f_1 =$

$$f_2 =$$

$$f_3 =$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 auf $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ und $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ auf $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$

abbildet.

$$\alpha \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon v \mapsto$$

$$v +$$

Aufgabe 4 (3 Punkte) Gegeben ist das Koordinatensystem

$$\mathbb{F} = \left(\left(\begin{array}{c} -5 \\ 3 \end{array} \right); \left(\begin{array}{c} -1 \\ 2 \end{array} \right), \left(\begin{array}{c} -2 \\ 0 \end{array} \right) \right) .$$

Bestimmen Sie die Koordinatentransformation von Standard- auf F-Koordinaten und umgekehrt.

$${}_{\mathbb{E}} \kappa_{\mathbb{F}} \colon v \mapsto \boxed{ \qquad \qquad } v + \boxed{ \qquad \qquad } , \quad {}_{\mathbb{F}} \kappa_{\mathbb{E}} \colon v \mapsto \boxed{ \qquad } v + \boxed{ \qquad }$$

Aufgabe 5 (5 Punkte) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix

$$\begin{pmatrix} 4 & -5 \\ 13 & -4 \end{pmatrix}$$

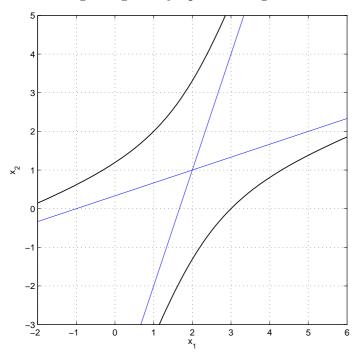
Eigenwerte:
$$\lambda_1 =$$
 , $\lambda_2 =$

Eigenräume:
$$V(\lambda_1)=$$
 , $V(\lambda_2)=$

In der Abbildung ist die Quadrik

$$Q = \{x \in \mathbb{R}^2 \mid 3x_1^2 - 10x_1x_2 + 3x_2^2 - 2x_1 + 14x_2 - 21 = 0\}$$

mit den zugehörigen Asymptoten dargestellt:



Kegelige Quadrik ,	Mittelpunktsquadrik , Parabolische Quadrik
Geben Sie eine affine Normal	form der Quadrik an.
Geben Sie eine euklidische No	ormalform der Quadrik an.
Geben Sie ein kartesisches Ko	pordinatensystem $\mathbb F$ an, in dem die Quadrik diese euklidische Normalform
besitzt und zeichnen Sie diese	es Koordinatensystem in die Abbildung ein.
I .	

Gegeben ist die Quadrik

$$Q = \{x \in \mathbb{R}^3 \mid -2x_1^2 + 3x_2^2 - 4x_3^2 - 6x_2 - 8x_3 = 0\} .$$

Bestimmen Sie F und t für die Koordinatentransformation $_{\mathbb{F}}\kappa_{\mathbb{E}} \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon v \mapsto Fv + t$ in ein kartesisches Koordinatensystem \mathbb{F} , in dem die Quadrik euklidische Normalform besitzt.

Geben Sie die Gestalt der Quadrik an:

Aufgabe 8 (2 Punkte)

Gegeben sei eine Matrix $A \in \mathbb{R}^{n \times n}$ für ein $n \in \mathbb{N}$. Sei $\lambda \in \mathbb{R}$ ein Eigenwert von A zum Eigenvektor v. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor v an.

(a)
$$A^7$$

Eigenwert:

Sei $B \in \mathbb{R}^{n \times n}$ zu A konjugiert, d.h. es gibt eine reguläre Matrix T mit $B = T^{-1}AT$. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor $T^{-1}v$ an.

Eigenwert

rt:			

Aufgabe 9 (2 Punkte)

	Monoton	Beschränkt
$a_n = -(4n+2)$		
$b_n = 2 - 2^{-3n}$		
$c_n = (-1)^n \frac{4}{n}$		
$d_n = \frac{7}{5}\sin\left(\frac{5\pi n}{2}\right)$		

Matrikel-Nummer: Studiengang:

Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Punkte	/1	/3	/4	/3	/5	/8	/4	/2	/2	/32

Bitte beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Werte der Winkelfunktionen könnten hilfreich sein:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Viel Erfolq!

 ${\bf Aufgabe\ 1}\ (1\ Punkt)$ Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an.

Name des Tutors/der Tutorin:

Gruppennr.:

.:

Aufgabe 2 (3 Punkte) Gegeben sind die Vektoren

$$b_1 = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 0 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 5 \\ 2 \\ 2 \\ 0 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 5 \\ 2 \\ 3 \\ -4 \end{pmatrix}.$$

Bestimmen Sie ein Orthonormalsystem f_1, f_2, f_3 mit $f_1 \in L(b_1), f_2 \in L(b_1, b_2), f_3 \in L(b_1, b_2, b_3)$.

 $f_1 =$

$$f_2 =$$

$$f_3 =$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 auf $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ auf $\begin{pmatrix} 6 \\ -1 \end{pmatrix}$

abbildet.

$$\alpha \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon v \mapsto$$

$$v +$$

Aufgabe 4 (3 Punkte) Gegeben ist das Koordinatensystem

$$\mathbb{F} = \left(\left(\begin{array}{c} 3 \\ 1 \end{array} \right); \left(\begin{array}{c} 4 \\ 4 \end{array} \right), \left(\begin{array}{c} -3 \\ -2 \end{array} \right) \right) .$$

Bestimmen Sie die Koordinatentransformation von Standard- auf F-Koordinaten und umgekehrt.

$${}_{\mathbb{E}} \kappa_{\mathbb{F}} \colon v \mapsto \boxed{ \qquad \qquad } v + \boxed{ \qquad \qquad } , \quad {}_{\mathbb{F}} \kappa_{\mathbb{E}} \colon v \mapsto \boxed{ \qquad } v + \boxed{ \qquad }$$

Aufgabe 5 (5 Punkte) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix

$$\begin{pmatrix} 2 & -4 \\ 17 & -2 \end{pmatrix}$$

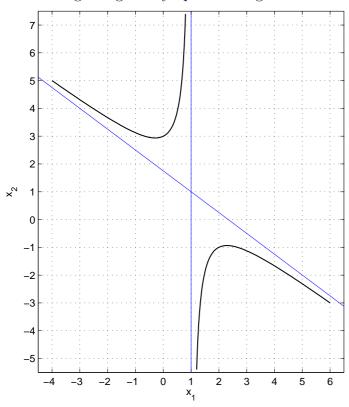
Eigenwerte:
$$\lambda_1 =$$
 , $\lambda_2 =$

Eigenräume:
$$V(\lambda_1) =$$
 , $V(\lambda_2) =$

In der Abbildung ist die Quadrik

$$Q = \{x \in \mathbb{R}^2 \mid -3x_1^2 - 4x_1x_2 - 0x_2^2 + 10x_1 + 4x_2 - 12 = 0\}$$

mit den zugehörigen Asymptoten dargestellt:



Kegelige Quadrik ,	Mittelpunktsquadrik ,	Parabolische Quadrik
Geben Sie eine affine Norma	alform der Quadrik an.	
Geben Sie eine euklidische N	Vormalform der Quadrik an.	
Geben Sie ein kartesisches K	Coordinatensystem $\mathbb F$ an, in dem of	die Quadrik diese euklidische Normalform
besitzt und zeichnen Sie die	ses Koordinatensystem in die Ab	bildung ein.

Gegeben ist die Quadrik

$$Q = \{ x \in \mathbb{R}^3 \mid 2x_1^2 + 3x_2^2 - 12x_2 + 2x_3 = 0 \} .$$

Bestimmen Sie F und t für die Koordinatentransformation $_{\mathbb{F}}\kappa_{\mathbb{E}} \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon v \mapsto Fv + t$ in ein kartesisches Koordinatensystem \mathbb{F} , in dem die Quadrik euklidische Normalform besitzt.

Geben Sie die Gestalt der Quadrik an:

Aufgabe 8 (2 Punkte)

Gegeben sei eine Matrix $A \in \mathbb{R}^{n \times n}$ für ein $n \in \mathbb{N}$. Sei $\lambda \in \mathbb{R}$ ein Eigenwert von A zum Eigenvektor v. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor v an.

 A^6 (a)

Eigenwert:

Sei $B \in \mathbb{R}^{n \times n}$ zu A konjugiert, d.h. es gibt eine reguläre Matrix T mit $B = T^{-1}AT$. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor $T^{-1}v$ an.

(b) 7B

Eigenwert:

Aufgabe 9 (2 Punkte)

	Monoton	Beschränkt
$a_n = -(2n+3)$		
$b_n = (-1)^n \frac{3}{n}$		
$c_n = 4 - 2^{-5n}$		
$d_n = \frac{7}{5}\cos\left(\frac{5\pi n}{2}\right)$		

Matrikel-Nummer: Studiengang:

Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Punkte	/1	/3	/4	/3	/5	/8	/4	/2	/2	/32

Bitte beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Werte der Winkelfunktionen könnten hilfreich sein:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Viel Erfolq!

Aufgabe 1 (1 Punkt) Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an.

Name des Tutors/der Tutorin:

Gruppennr.:

:

Aufgabe 2 (3 Punkte) Gegeben sind die Vektoren

$$b_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 3 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 2 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 2 \\ 3 \\ -5 \\ 3 \end{pmatrix}.$$

Bestimmen Sie ein Orthonormalsystem f_1, f_2, f_3 mit $f_1 \in L(b_1), f_2 \in L(b_1, b_2), f_3 \in L(b_1, b_2, b_3)$.

 $f_1 =$

$$f_2 =$$

$$f_3 =$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 auf $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ auf $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$

abbildet.

Aufgabe 4 (3 Punkte) Gegeben ist das Koordinatensystem

$$\mathbb{F} = \left(\left(\begin{array}{c} 2 \\ -5 \end{array} \right); \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} -2 \\ 4 \end{array} \right) \right) .$$

Bestimmen Sie die Koordinatentransformation von Standard- auf F-Koordinaten und umgekehrt.

$${}_{\mathbb{E}} \kappa_{\mathbb{F}} \colon v \mapsto \boxed{ \qquad \qquad } v + \boxed{ \qquad \qquad } , \quad {}_{\mathbb{F}} \kappa_{\mathbb{E}} \colon v \mapsto \boxed{ \qquad } v + \boxed{ \qquad }$$

Aufgabe 5 (5 Punkte) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix

$$\begin{pmatrix} 2 & -5 \\ 17 & -2 \end{pmatrix}$$

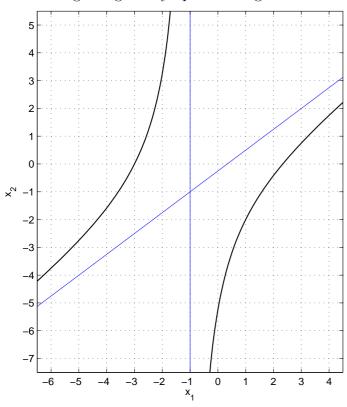
Eigenwerte:
$$\lambda_1 =$$
 , $\lambda_2 =$

Eigenräume:
$$V(\lambda_1)=$$
 , $V(\lambda_2)=$

In der Abbildung ist die Quadrik

$$Q = \{ x \in \mathbb{R}^2 \mid 3x_1^2 - 4x_1x_2 + 0x_2^2 + 2x_1 - 4x_2 - 21 = 0 \}$$

mit den zugehörigen Asymptoten dargestellt:

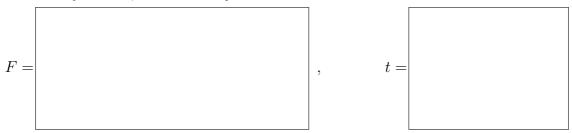


	Kegelige Quadrik ,	Mittelpunktsquadrik ,	Parabolische Quadrik
Geb	en Sie eine affine Normalf	orm der Quadrik an.	
Geb	en Sie eine euklidische No	ormalform der Quadrik an.	
Geb	en Sie ein kartesisches Ko	ordinatensystem \mathbb{F} an, in dem of	die Quadrik diese euklidische Normalform
besit	zt und zeichnen Sie diese	es Koordinatensystem in die Ab	bildung ein.

Gegeben ist die Quadrik

$$Q = \{ x \in \mathbb{R}^3 \mid 2x_1^2 - 3x_2^2 - 12x_2 + 2x_3 - 4 = 0 \} .$$

Bestimmen Sie F und t für die Koordinatentransformation $_{\mathbb{F}}\kappa_{\mathbb{E}} \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon v \mapsto Fv + t$ in ein kartesisches Koordinatensystem \mathbb{F} , in dem die Quadrik euklidische Normalform besitzt.



Geben Sie die Gestalt der Quadrik an:

Aufgabe 8 (2 Punkte)

Gegeben sei eine Matrix $A \in \mathbb{R}^{n \times n}$ für ein $n \in \mathbb{N}$. Sei $\lambda \in \mathbb{R}$ ein Eigenwert von A zum Eigenvektor v. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor v an.

Eigenwert:

Sei $B \in \mathbb{R}^{n \times n}$ zu A konjugiert, d.h. es gibt eine reguläre Matrix T mit $B = T^{-1}AT$. Geben Sie einen Eigenwert der folgenden Matrix zum Eigenvektor $T^{-1}v$ an.

(b) 8B

Eigenwert

ert:		

Aufgabe 9 (2 Punkte)

	Monoton	Beschränkt
$a_n = (-1)^n \frac{5}{n}$		
$b_n = -(7n+1)$		
$c_n = 1 + 2^{-4n}$		
$d_n = \frac{7}{3}\sin\left(\frac{3\pi n}{2}\right)$		