

Gegeben seien die folgenden Funktionen.

$$f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto x^2 + 2xy + y^2$$
 $g: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto x^2 + 4y^2 - 4$

Berechnen Sie die Gradienten von f und q.

$$\operatorname{grad} f(x,y) = \begin{pmatrix} 2x + 2y \\ 2x + 2y \end{pmatrix} \qquad \operatorname{grad} g(x,y) = \begin{pmatrix} 2x \\ 8y \end{pmatrix}$$

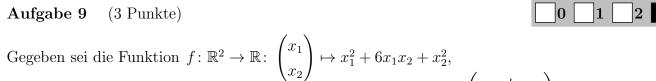
Geben Sie die drei Gleichungen an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung g(x,y)=0 beschreiben:

$$2x + 2y + \lambda \cdot 2x = 0$$
$$2x + 2y + \lambda \cdot 8y = 0$$
$$x^{2} + 4y^{2} - 4 = 0$$

Welche der folgenden Kandidaten erfüllen die Bedingungen? Geben Sie gegebenenfalls dazu auch den Lagrange-Multiplikator λ an.

$$p_1 = \left(\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$
 \square Ja, mit $\lambda = \boxed{\qquad}$ $p_2 = \left(-\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)$ \boxtimes Ja, mit $\lambda = \boxed{\qquad}$ $-\frac{5}{4}$ \square Nein

Aufgabe 9 (3 Punkte)



sowie die Kurve K mit der Parametrisierung $C: [0, \pi] \to \mathbb{R}^2: t \mapsto \begin{pmatrix} t \\ 2 + \cos(t) \end{pmatrix}$.

Bestimmen Sie den Anfangspunkt und den Endpunkt der Kurve K.

$$C(0) = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \qquad C(\pi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Berechnen Sie das folgende Kurvenintegral.

$$\int_{K} \operatorname{grad} f(x) \cdot dx = \pi^{2} + 6\pi - 8$$

+1/1/60+

Scheinklausur Höhere Mathematik 2 9.7.2016

Beachten Sie die folgenden Hinweise:

2 $\mathbf{3}$

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
	Vic	l Erfol

 $a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}^+$

Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-	$\boxed{} 0 \ \boxed{} 0$	oo
kelnummer und Ihre Übungsgruppennum-		1 $$ 1
mer, indem Sie die entsprechenden Kästen	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ausfüllen. Tragen Sie außerdem Ihren Namen	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
und Ihre Matrikelnummer in die unten ste-	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{bmatrix} 4 & 4 \end{pmatrix}$
henden Felder ein.	5 5 5 5 5 5 5	- 5
Name, Vorname:		
		7
Matrikelnummer:	8 8 8 8 8 8	
	$\boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9}$	$\boxed{9}\boxed{9}$
	· — — —	

Gegeben seien die Funktionen

$$f \colon \mathbb{R}^3 \to \mathbb{R}^2 : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_2 x_3 \\ x_1^2 \end{pmatrix} \qquad g \colon \mathbb{R}^2 \to \mathbb{R}^2 : \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} \sin(\pi y_2) \\ e^{(-y_1^2)} \end{pmatrix}$$

(a) Berechnen Sie die Jacobi-Matrix von $h := g \circ f$:

$$Jh\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2\pi x_1 \cos(\pi x_1^2) & 0 & 0 \\ 0 & -2x_2 x_3^2 e^{\left(-x_2^2 x_3^2\right)} & -2x_2^2 x_3 e^{\left(-x_2^2 x_3^2\right)} \end{pmatrix}$$

(b) Geben Sie die lineare Approximation von g im Punkt $a = (1,0)^{\mathsf{T}}$ an:

$$g\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ e^{-1} \end{pmatrix} + \begin{pmatrix} 0 & \pi \\ -2e^{-1} & 0 \end{pmatrix} \begin{pmatrix} y_1 - 1 \\ y_2 \end{pmatrix} + o\left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - a \right) \end{pmatrix}$$

Aufgabe 3 (5 Punkte)

Es sind die folgenden Funktionen gegeben:

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sinh(\sqrt[3]{2}x) - \sqrt[3]{2}x \text{ und } g: \mathbb{R} \setminus \{0\} \to \mathbb{R}: x \mapsto x^{-3}.$$

(a) Bestimmen Sie die folgende Ableitungen:

$$\frac{\mathrm{d}}{\mathrm{d}x} f(x) = \sqrt[3]{2} \left(\cosh\left(\sqrt[3]{2}x\right) - 1 \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} f(g(x)) = 3\sqrt[3]{2} \left(1 - \cosh\left(\sqrt[3]{2}x^{-3}\right)\right) x^{-4}$$

(b) Bestimmen Sie die folgenden Grenzwerte:

$$\lim_{x \to 0} f(x) g(x) = \frac{1}{3} \qquad \lim_{x \to 0} \sqrt[3]{2} \ln(f(x) + 2) = \sqrt[3]{2} \ln(2)$$

+1/2/59+

Aufgabe 4 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den

Entwicklungspunkt $z_0 \in \mathbb{C}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$

	$\sum_{k=2}^{\infty} \left(\frac{z - i}{1 + i} \right)^k$	$\sum_{j=0}^{\infty} \left(\frac{1}{2}z - i + 1\right)^{j}$	$\sum_{n=4}^{\infty} \left(\sqrt{2} + i^n\right)^n \left(\frac{z+3}{1+2i}\right)^n$
z_0	i	-2 + 2i	-3
ρ	$\sqrt{2}$	2	$\frac{\sqrt{5}}{\sqrt{2}+1}$

Aufgabe 5 (3 Punkte)

Berechnen Sie zum folgenden Vektorfeld f ein Potential U so, dass U(0,0)=5 gilt.

$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -3\sin(y^2 + 3x)e^y \\ -2y\sin(y^2 + 3x)e^y + \cos(y^2 + 3x)e^y \end{pmatrix}$$

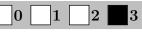
$$U \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \cos(y^2 + 3x) e^y + 4$$

Aufgabe 6 (2 Punkte)

Bestimmen Sie die folgenden Integrale.

$\int \frac{\sin(\ln(x^2))}{3x} \mathrm{d} x$	$\left[-\frac{1}{6}\cos(\ln(x^2)) \right]$
$\int \frac{5x^4 + 15x^2 + 4x}{x^5 + 5x^3 + 2x^2 + 1} \mathrm{d}x$	$\left[\ln(x^5 + 5x^3 + 2x^2 + 1)\right]$

Aufgabe 7 (3 Punkte)



$$\frac{8x^2 + 9x + 18}{(x+2)(x^2+4)} = \frac{4}{x+2} + \frac{1+4}{x^2+4}$$

otag 0
otag 1
otag 2
otag 1

Gegeben seien die folgenden Funktionen.

$$f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto 2x^2 + 4xy + 2y^2$$
 $g: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto 4x^2 + y^2 - 4$

Berechnen Sie die Gradienten von f und g.

$$\operatorname{grad} f(x,y) = \begin{pmatrix} 4x + 4y \\ 4x + 4y \end{pmatrix} \qquad \operatorname{grad} g(x,y) = \begin{pmatrix} 8x \\ 2y \end{pmatrix}$$

Geben Sie die drei Gleichungen an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung g(x, y) = 0 beschreiben:

$$4x + 4y + \lambda \cdot 8x = 0$$
$$4x + 4y + \lambda \cdot 2y = 0$$
$$4x^{2} + y^{2} - 4 = 0$$

Welche der folgenden Kandidaten erfüllen die Bedingungen? Geben Sie gegebenenfalls dazu auch den Lagrange-Multiplikator λ an.

Aufgabe 9 (3 Punkte)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto x_1^2 + 4x_1x_2 + x_2^2,$ sowie die Kurve K mit der Parametrisierung $C: [0, \pi] \to \mathbb{R}^2: t \mapsto \begin{pmatrix} t \\ 2 - \sin(t) \end{pmatrix}$. Bestimmen Sie den Anfangspunkt und den Endpunkt der Kurve K.

$$C(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Berechnen Sie das folgende Kurvenintegral.

$$\int_{K} \operatorname{grad} f(x) \cdot dx = \pi^2 + 8\pi$$

+2/1/58+

Scheinklausur	Höhere Mathematik 2	9.7.20
•••••••••••••		J U

Beachten Sie die folgenden Hinweise:

 $\boxed{}1$ $\boxed{}2$ $\boxed{}3$ $\boxed{}4$

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt.

 Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
	17:	1 Ff-1

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolq!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-		
kelnummer und Ihre Übungsgruppennum-		$egin{array}{cccccccccccccccccccccccccccccccccccc$
mer, indem Sie die entsprechenden Kästen	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ausfüllen. Tragen Sie außerdem Ihren Namen	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3
und Ihre Matrikelnummer in die unten ste-		-4
henden Felder ein.	5 5 5 5 5 5	
Name, Vorname:		\Box 6 \Box 6
Matrikelnummer:	8 8 8 8 8 8 8	
	<u> </u>	



Gegeben seien die Funktionen

$$f: \mathbb{R}^3 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_2 x_3 \\ x_1^2 \end{pmatrix} \qquad g: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} e^{(-y_2^2)} \\ \cos(\pi y_1) \end{pmatrix}$$

(a) Berechnen Sie die Jacobi-Matrix von $h := q \circ f$:

$$Jh \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -4x_1^3 e^{(-x_1^4)} & 0 & 0 \\ 0 & -\pi x_3 \sin(\pi x_2 x_3) & -\pi x_2 \sin(\pi x_2 x_3) \end{pmatrix}$$

(b) Geben Sie die lineare Approximation von g im Punkt $a = (\frac{1}{2}, 1)^{\mathsf{T}}$ an:

$$g\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} e^{-1} \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & -2e^{-1} \\ -\pi & 0 \end{pmatrix} \begin{pmatrix} y_1 - \frac{1}{2} \\ y_2 - 1 \end{pmatrix} + o\left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - a \right)$$

Aufgabe 3 (5 Punkte)

Es sind die folgenden Funktionen gegeben:

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sinh(\sqrt[3]{3}x) - \sqrt[3]{3}x \text{ und } g: \mathbb{R} \setminus \{0\} \to \mathbb{R}: x \mapsto x^{-3}.$$

(a) Bestimmen Sie die folgende Ableitungen:

$$\frac{\mathrm{d}}{\mathrm{d}x} f(x) = \sqrt[3]{3} \left(\cosh\left(\sqrt[3]{3}x\right) - 1 \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} f(g(x)) = 3\sqrt[3]{3} \left(1 - \cosh\left(\sqrt[3]{3}x^{-3}\right)\right) x^{-4}$$

(b) Bestimmen Sie die folgenden Grenzwerte:

$$\lim_{x \to 0} f(x) g(x) = \frac{1}{2} \qquad \qquad \lim_{x \to 0} \sqrt[3]{3} \ln(f(x) + 2) = \sqrt[3]{3} \ln(2)$$

+2/2/57+

Aufgabe 4 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den

Entwicklungspunkt $z_0 \in \mathbb{C}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$

	$\sum_{k=2}^{\infty} \left(\frac{2}{3}z - 2i + 2\right)^k$	$\sum_{j=0}^{\infty} \left(\frac{z+i}{1-i} \right)^j$	$\sum_{n=4}^{\infty} \left(\sqrt{3} + i^n\right)^n \left(\frac{z-2}{1+i}\right)^n$
z_0	-3 + 3i	—i	2
ρ	$\frac{3}{2}$	$\sqrt{2}$	$\frac{\sqrt{2}}{\sqrt{3}+1}$

Aufgabe 5 (3 Punkte)

Berechnen Sie zum folgenden Vektorfeld f ein Potential U so, dass U(0,0)=6 gilt.

$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -2\sin(y^2 + 2x)e^y \\ -2y\sin(y^2 + 2x)e^y + \cos(y^2 + 2x)e^y \end{pmatrix}$$

$$U \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \cos(y^2 + 2x) e^y + 5$$

Aufgabe 6 (2 Punkte)

Bestimmen Sie die folgenden Integrale.

$\int \frac{\sin(\ln(x^2))}{2x} \mathrm{d} x$	$\left[-\frac{1}{4}\cos(\ln(x^2)) \right]$
$\int \frac{5x^4 + 12x^2 + 6x}{x^5 + 4x^3 + 3x^2 + 1} \mathrm{d}x$	$\left[\ln(x^5 + 4x^3 + 3x^2 + 1)\right]$

Aufgabe 7 (3 Punkte)

$$\frac{6x^2 - 5x + 25}{(x - 2)(x^2 + 9)} = \frac{3}{x - 2} + \frac{1 + 3}{x^2 + 3}$$

 $egin{array}{c|c} 0 & 1 & 2 \end{array}$

Gegeben seien die folgenden Funktionen.

$$f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto -x^2 - 2xy - y^2$$
 $g: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto x^2 + 9y^2 - 5$

Berechnen Sie die Gradienten von f und g.

$$\operatorname{grad} f(x,y) = \begin{pmatrix} -2x - 2y \\ -2x - 2y \end{pmatrix} \qquad \operatorname{grad} g(x,y) = \begin{pmatrix} 2x \\ 18y \end{pmatrix}$$

Geben Sie die drei Gleichungen an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung g(x,y) = 0 beschreiben:

$$-2x - 2y + \lambda \cdot 2x = 0$$
$$-2x - 2y + \lambda \cdot 18y = 0$$
$$x^2 + 9y^2 - 5 = 0$$

Welche der folgenden Kandidaten erfüllen die Bedingungen? Geben Sie gegebenenfalls dazu auch den Lagrange-Multiplikator λ an.

$$p_1 = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$
 \square Ja, mit $\lambda =$ \square \square Nein \square Nein

Aufgabe 9 (3 Punkte)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto x_1^2 - 6x_1x_2 + x_2^2,$ sowie die Kurve K mit der Parametrisierung $C: [0, \pi] \to \mathbb{R}^2: t \mapsto \begin{pmatrix} t \\ 2 - \cos(t) \end{pmatrix}$. Bestimmen Sie den Anfangspunkt und den Endpunkt der Kurve K.

$$C(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \qquad C(\pi) = \begin{bmatrix} \pi \\ 3 \end{bmatrix}$$

Berechnen Sie das folgende Kurvenintegral.

$$\int_{K} \operatorname{grad} f(x) \cdot dx = \pi^{2} - 18\pi + 8$$

+3/1/56+

Scheinklausur Höhere Mathematik 2 9.7.2016

Beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt.

 Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
	Vác	l Enfol

 $a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}^+$

Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-		oo
kelnummer und Ihre Übungsgruppennum-		1 $$ 1
mer, indem Sie die entsprechenden Kästen		
ausfüllen. Tragen Sie außerdem Ihren Namen	$\boxed{}3\ \boxed{}3\ \boxed{}3\ \boxed{}3\ \boxed{}3$	
und Ihre Matrikelnummer in die unten ste-	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	4
henden Felder ein.	5 5 5 5 5 5	5 5
Name, Vorname:		6
		7
Matrikelnummer:	8 8 8 8 8 8	8 8
	9999999	$\boxed{9}\boxed{9}$

Gegeben seien die Funktionen

$$f \colon \mathbb{R}^3 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_2 x_1 \\ x_3^2 \end{pmatrix} \qquad g \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} \cos(\pi y_2) \\ -2e^{(y_1^2)} \end{pmatrix}$$

(a) Berechnen Sie die Jacobi-Matrix von $h := q \circ f$:

$$Jh \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -2\pi x_3 \sin(\pi x_3^2) \\ -4x_1 x_2^2 e^{\left(x_1^2 x_2^2\right)} & -4x_1^2 x_2 e^{\left(x_1^2 x_2^2\right)} & 0 \end{pmatrix}$$

(b) Geben Sie die lineare Approximation von g im Punkt $a = (1, \frac{1}{2})^{\mathsf{T}}$ an:

$$g\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ -2e \end{pmatrix} + \begin{pmatrix} 0 & -\pi \\ -4e & 0 \end{pmatrix} + \begin{pmatrix} y_1 - 1 \\ y_2 - \frac{1}{2} \end{pmatrix} + o\left(\begin{vmatrix} y_1 \\ y_2 \end{pmatrix} - a \end{vmatrix} \right)$$

Aufgabe 3 (5 Punkte)

Es sind die folgenden Funktionen gegeben:

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sinh(\sqrt[3]{5}x) - \sqrt[3]{5}x$$
 und $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}: x \mapsto x^{-3}$.

(a) Bestimmen Sie die folgende Ableitungen:

$$\frac{\mathrm{d}}{\mathrm{d}x} f(x) = \sqrt[3]{5} \left(\cosh\left(\sqrt[3]{5}x\right) - 1 \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} f(g(x)) = 3\sqrt[3]{5} \left(1 - \cosh\left(\sqrt[3]{5}x^{-3}\right)\right) x^{-4}$$

(b) Bestimmen Sie die folgenden Grenzwerte:

$$\lim_{x \to 0} f(x) g(x) = \begin{bmatrix} \frac{5}{6} \\ \frac{1}{6} \end{bmatrix} \qquad \lim_{x \to 0} \sqrt[3]{5} \ln(f(x) + 2) = \begin{bmatrix} \sqrt[3]{5} \ln(2) \\ \frac{1}{6} \end{bmatrix}$$

+3/2/55+

Aufgabe 4 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den

Entwicklungspunkt $z_0 \in \mathbb{C}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$

	$\sum_{k=2}^{\infty} \left(\frac{3}{5}z - 3i + 3 \right)^k$	$\sum_{j=0}^{\infty} \left(\frac{z-1}{1+2i} \right)^j$	$\sum_{n=4}^{\infty} \left(\sqrt{5} + i^n\right)^n \left(\frac{z - \sqrt{7}}{1 - 2i}\right)^n$
z_0	-5 + 5i	1	$\sqrt{7}$
ρ	$\frac{5}{3}$	$\sqrt{5}$	$\frac{\sqrt{5}}{\sqrt{5}+1}$

Aufgabe 5 (3 Punkte)

Berechnen Sie zum folgenden Vektorfeld f ein Potential U so, dass U(0,0)=4 gilt.

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -5\sin(y^2 + 5x)e^y \\ -2y\sin(y^2 + 5x)e^y + \cos(y^2 + 5x)e^y \end{pmatrix}$$

$$U \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \cos(y^2 + 5x) e^y + 3$$

Aufgabe 6 (2 Punkte)

Bestimmen Sie die folgenden Integrale.

$\int \frac{\cos(\ln(x^2))}{3x} \mathrm{d} x$	$\left[\frac{1}{6}\sin(\ln(x^2))\right]$
$\int \frac{5x^4 + 9x^2 + 14x}{x^5 + 3x^3 + 7x^2 + 1} \mathrm{d}x$	$\left[\ln(x^5 + 3x^3 + 7x^2 + 1)\right]$

Aufgabe 7 (3 Punkte)

$$\frac{7x^2 + 5x + 13}{(x+1)(x^2+4)} = \frac{3}{x+1} + \frac{1+4}{x^2+1}$$

otag 0
otag 1
otag 2
otag 1

Gegeben seien die folgenden Funktionen.

$$f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto -2x^2 - 4xy - 2y^2$$
 $g: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto 9x^2 + y^2 - 5$

Berechnen Sie die Gradienten von f und g.

$$\operatorname{grad} f(x,y) = \begin{pmatrix} -4x - 4y \\ -4x - 4y \end{pmatrix} \qquad \operatorname{grad} g(x,y) = \begin{pmatrix} 18x \\ 2y \end{pmatrix}$$

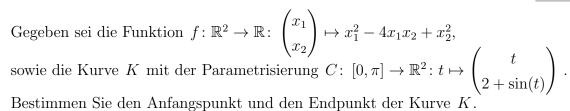
Geben Sie die drei Gleichungen an, die die Bedingungen von Lagrange für lokale Extrema von f unter der Nebenbedingung g(x, y) = 0 beschreiben:

$$-4x - 4y + \lambda \cdot 18x = 0$$
$$-4x - 4y + \lambda \cdot 2y = 0$$
$$9x^{2} + y^{2} - 5 = 0$$

Welche der folgenden Kandidaten erfüllen die Bedingungen? Geben Sie gegebenenfalls dazu auch den Lagrange-Multiplikator λ an.

$$p_1 = \left(\frac{1}{3\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$$
 \boxtimes Ja, mit $\lambda = \boxed{\begin{array}{c} \frac{20}{9} \\ \hline \square \text{ Nein} \end{array}}$ $p_2 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ \square Ja, mit $\lambda = \boxed{\begin{array}{c} \hline \square \end{array}}$

Aufgabe 9 (3 Punkte)



$$C(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$C(\pi) = \begin{pmatrix} \pi \\ 2 \end{pmatrix}$$

Berechnen Sie das folgende Kurvenintegral.

$$\int_{K} \operatorname{grad} f(x) \cdot dx = \pi^{2} - 8\pi$$

+4/1/54+

Scheinklausur	Höhere Mathematik 2	9.7.201

Beachten Sie die folgenden Hinweise:

 $\boxed{} 1 \ \boxed{} 2 \ \boxed{} 3 \ \boxed{} 4$

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt.

 Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-	$\boxed{} 0 \ \boxed{} 0$	oo
kelnummer und Ihre Übungsgruppennum-		1 $$ 1
mer, indem Sie die entsprechenden Kästen	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ausfüllen. Tragen Sie außerdem Ihren Namen	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
und Ihre Matrikelnummer in die unten ste-	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{bmatrix} 4 & 4 \end{pmatrix}$
henden Felder ein.	5 5 5 5 5 5 5	5 5
Name, Vorname:		\Box 6 \Box 6
		7
Matrikelnummer:	8 8 8 8 8 8	
	$\boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9} \boxed{9}$	$\boxed{9}\boxed{9}$
	· — — —	

Gegeben seien die Funktionen

$$f \colon \mathbb{R}^3 \to \mathbb{R}^2 : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_2 x_1 \\ x_3^2 \end{pmatrix} \qquad g \colon \mathbb{R}^2 \to \mathbb{R}^2 : \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} e^{(y_2^2)} \\ 3\sin(\pi y_1) \end{pmatrix}$$

(a) Berechnen Sie die Jacobi-Matrix von $h := q \circ f$:

$$Jh\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4x_3^3 e^{(x_3^4)} \\ 3\pi x_2 \cos(\pi x_1 x_2) & 3\pi x_1 \cos(\pi x_1 x_2) & 0 \end{pmatrix}$$

(b) Geben Sie die lineare Approximation von g im Punkt $a = (1,1)^{\mathsf{T}}$ an:

$$g\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} e \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 2e \\ -3\pi & 0 \end{pmatrix} + \begin{pmatrix} y_1 - 1 \\ y_2 - 1 \end{pmatrix} + o\left(\begin{vmatrix} y_1 \\ y_2 \end{pmatrix} - a \end{vmatrix} \right)$$

Aufgabe 3 (5 Punkte)

Es sind die folgenden Funktionen gegeben:

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sinh(\sqrt[3]{7}x) - \sqrt[3]{7}x \text{ und } g: \mathbb{R} \setminus \{0\} \to \mathbb{R}: x \mapsto x^{-3}.$$

(a) Bestimmen Sie die folgende Ableitungen:

$$\frac{\mathrm{d}}{\mathrm{d}x} f(x) = \sqrt[3]{7} \left(\cosh\left(\sqrt[3]{7}x\right) - 1 \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} f(g(x)) = 3\sqrt[3]{7} \left(1 - \cosh\left(\sqrt[3]{7}x^{-3}\right)\right) x^{-4}$$

(b) Bestimmen Sie die folgenden Grenzwerte:

$$\lim_{x \to 0} f(x) g(x) = \begin{bmatrix} \frac{7}{6} & \lim_{x \to 0} \sqrt[3]{7} \ln(f(x) + 2) & = \end{bmatrix} \sqrt[3]{7} \ln(2)$$

+4/2/53+

Aufgabe 4 (4 Punkte)

Bestimmen Sie für die folgenden komplexen Potenzreihen jeweils den

Entwicklungspunkt $z_0 \in \mathbb{C}$ und den Konvergenzradius $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$

	$\sum_{k=2}^{\infty} \left(\frac{z+1}{1-2i} \right)^k$	$\sum_{j=0}^{\infty} \left(\frac{5}{7}z - 5i + 5\right)^j$	$\sum_{n=4}^{\infty} \left(\sqrt{7} + i^n\right)^n \left(\frac{z - 2i}{1 - i}\right)^n$
z_0	-1	-7 + 7i	2i
ρ	$\sqrt{5}$	$\frac{7}{5}$	$\frac{\sqrt{2}}{\sqrt{7}+1}$

Aufgabe 5 (3 Punkte)

Berechnen Sie zum folgenden Vektorfeld f ein Potential U so, dass U(0,0)=7 gilt.

$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -4\sin(y^2 + 4x)e^y \\ -2y\sin(y^2 + 4x)e^y + \cos(y^2 + 4x)e^y \end{pmatrix}$$

$$U \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \cos(y^2 + 4x) e^y + 6$$

Aufgabe 6 (2 Punkte)

Bestimmen Sie die folgenden Integrale.

$\int \frac{\cos(\ln(x^2))}{2x} \mathrm{d} x$	$\left[\frac{1}{4}\sin(\ln(x^2))\right]$
$\int \frac{5x^4 + 6x^2 + 18x}{x^5 + 2x^3 + 9x^2 + 1} \mathrm{d}x$	$\left[\ln(x^5 + 2x^3 + 9x^2 + 1)\right]$

Aufgabe 7 (3 Punkte)

$$\frac{5x^2 - 2x + 17}{(x-1)(x^2+9)} = \frac{2}{x-1} + \frac{1+3}{x^2+1}$$