

Gegeben ist die Funktion in Potenzreihendarstellung

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sum_{n=1}^{\infty} \frac{2(-9)^n}{(2n-1)!} x^{4n-1}.$$

(a) Geben Sie die Stammfunktion F von f mit F(0) = 1 als Potenzreihe an.

$$F(x) = \sum_{n=0}^{\infty} \frac{(-9)^n}{(2n)!} x^{4n}$$

(b) Stellen Sie F(x) und f(x) jeweils in geschlossener Form dar.

$$F(x) = \cos(3x^2)$$
 , $f(x) = -6x\sin(3x^2)$

Aufgabe 8 (5 Punkte)

Für Konstanten $a, b \in \mathbb{R}$ ist die Parametrisierung

$$C \colon [0,1] \to \mathbb{R}^2 \colon t \mapsto \begin{pmatrix} t \\ at+b \end{pmatrix}$$

einer Kurve K gegeben.

(a) Bestimmen Sie die Konstanten a, b so, dass C eine Kurve K von $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ nach $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ parametrisiert.

$$a = \boxed{ 2 \qquad b = \boxed{ -3}}$$

- (b) Bestimmen Sie die Länge der Kurve K aus (a). $L(K) = \sqrt{5}$
- (c) Gegeben sei das Vektorfeld

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 8x_1 \\ -3 \end{pmatrix}.$$

Bestimmen Sie ein Potential U von f so, dass U(0,0)=2 gilt.

$$U\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 4x_1^2 - 3x_2 + 2$$

Berechnen Sie das folgende Kurvenintegral von f längs K aus (a).

$$\int\limits_K f(x) \bullet dx = \boxed{-2}$$

+1000/1/60+

Scheinklausur Höhere Mathematik 2 5. 2. 2019

Beachten Sie die folgenden Hinweise:

1	$oxed{2}$	$\boxed{}3$	$\boxed{4}$
---	-----------	-------------	-------------

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-	0000000	
kelnummer und Ihre Übungsgruppennum-		
mer, indem Sie die entsprechenden Kästen	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ausfüllen. Tragen Sie außerdem Ihren Namen		3
und Ihre Matrikelnummer in die unten ste-		4
henden Felder ein.	5 5 5 5 5 5	5 5
Name, Vorname:		
Matrikelnummer:	8 8 8 8 8 8	8 8
	9999999	

Gegeben sind die Abbildungen

 $f \colon \mathbb{R}^3 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - 3x_2 - x_3 \\ 4x_2 + 1 \end{pmatrix}, \quad g \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto 2y_1.$

Berechnen Sie die Jacobi-Matrizen Jf und Jg(f(x)).

$$Jf \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 2 & -3 & -1 \\ 0 & 4 & 0 \end{bmatrix} \qquad Jg \begin{pmatrix} f \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 0 \end{pmatrix}$$

Aufgabe 3 (5 Punkte)

Gegeben sei die folgende Abbildung

$$f: (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \to \mathbb{R}: (x,y) \mapsto \frac{2(y-1)^2 + 1}{x}.$$

 $\mathbf{1}$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, welche die Bedingungen von Lagrange für relative Extrema von f auf der Menge $M := \{(x, y) \in (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \mid x^2 = 1\}$ beschreiben.

$$-\frac{2(y-1)^{2}+1}{x^{2}} +2\lambda x = 0$$

$$\frac{4(y-1)}{x} = 0$$

$$x^{2}-1 = 0$$

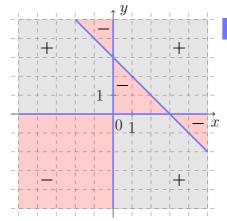
(b) Bestimmen Sie alle kritischen Stellen von f auf M und geben Sie den Funktionswert sowie den Typ an.

Stelle	Funktionswert	Тур
(-1,1)	-1	relatives Maximum
(1,1)	1	relatives Minimum

Aufgabe 4 (3 Punkte)

Berechnen Sie:

$\underline{\underline{\lim}}_{n \to +\infty} \left(4(-1)^n - \frac{1}{n} + 12 \right)$	$\lim_{N \to +\infty} 6 \sum_{k=0}^{N} \left(-\frac{1}{2} \right)^k$	$\lim_{b \to +\infty} \int_{0}^{b} 5x^{2} - x^{3} \mathrm{d} x$
8	4	$-\infty$

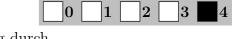

+1000/2/59+

Aufgabe 5 (8 Punkte)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto xy(y+x-3)$.

(a) Skizzieren Sie die Nullstellenmenge $N := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}$ von f für $-5 \le x \le 5$ und $-5 \le y \le 5$, und markieren Sie die Bereiche, in denen f positive bzw. negative Werte annimmt, mit "+" bzw. "-".

(b) Berechnen Sie: $\operatorname{grad} f(x,y) =$

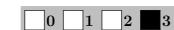

$$\begin{pmatrix} y(2x+y-3) \\ x(x+2y-3) \end{pmatrix}$$

(c) Bestimmen Sie alle kritischen Stellen von f und geben Sie jeweils deren Typ an.

Stelle	Тур
(0,0)	Sattelpunkt
(3,0)	Sattelpunkt
(0,3)	Sattelpunkt
(1,1)	lokales Minimum

(d) Bestimmen Sie die Tangente an die Niveaulinie $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 3\}$ im Punkt (1,-1).

Aufgabe 6 (4 Punkte)


Führen Sie eine Polynomdivision sowie eine Partialbruchzerlegung durch.

(a) Polynomdivision:

$$\frac{x^2 - 3x - 8}{x^2 - x - 2} = 2 + \frac{-x - 4}{x^2 - x - 2}$$

(b) Partialbruchzerlegung:

$$\frac{2x^2 - 3x - 8}{x^2 - x - 2} = 2 + \frac{1}{x + 1} - \frac{2}{x - 2}$$

Gegeben ist die Funktion in Potenzreihendarstellung

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sum_{n=1}^{\infty} \frac{2(-4)^n}{(2n-1)!} x^{4n-1}.$$

(a) Geben Sie die Stammfunktion F von f mit F(0) = 1 als Potenzreihe an.

$$F(x) = \sum_{n=0}^{\infty} \frac{(-4)^n}{(2n)!} x^{4n}$$

(b) Stellen Sie F(x) und f(x) jeweils in geschlossener Form dar.

$$F(x) = \cos(2x^2) \qquad , \qquad f(x) = -4x\sin(2x^2)$$

Aufgabe 8 (5 Punkte)

Für Konstanten $a, b \in \mathbb{R}$ ist die Parametrisierung

$$C \colon [0,1] \to \mathbb{R}^2 \colon t \mapsto \begin{pmatrix} t \\ at+b \end{pmatrix}$$

einer Kurve K gegeben.

(a) Bestimmen Sie die Konstanten a, b so, dass C eine Kurve K von $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ nach $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ parametrisiert.

$$a = \boxed{ \quad -3 \quad \quad } b = \boxed{ \quad -2 \quad \quad }$$

- (b) Bestimmen Sie die Länge der Kurve K aus (a). $L(K) = \sqrt{10}$
- (c) Gegeben sei das Vektorfeld

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -6x_1 \\ 4 \end{pmatrix}.$$

Bestimmen Sie ein Potential U von f so, dass U(0,0) = -3 gilt.

$$U\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -3x_1^2 + 4x_2 - 3$$

Berechnen Sie das folgende Kurvenintegral von f längs K aus (a).

$$\int_{K} f(x) \cdot dx = -15$$

+2000/1/58+

Scheinklausur Höhere Mathematik 2 5. 2. 2019

Beachten Sie die folgenden **Hinweise**:

	2	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	4
--	---	--	----------

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolq!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-	0000000	\bigcirc 0 \bigcirc 0
kelnummer und Ihre Übungsgruppennum-		
mer, indem Sie die entsprechenden Kästen	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ausfüllen. Tragen Sie außerdem Ihren Namen		3 3
und Ihre Matrikelnummer in die unten ste-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4
henden Felder ein.	5 5 5 5 5 5 5	
Name, Vorname:		66
		7
Matrikelnummer:		8 8
	9999999	

Gegeben sind die Abbildungen

$$f: \mathbb{R}^3 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_3 + 1 \\ 2x_1 - x_2 + 3x_3 \end{pmatrix}, \quad g: \mathbb{R}^2 \to \mathbb{R}: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto -y_2.$$

Berechnen Sie die Jacobi-Matrizen Jf und Jg(f(x)).

$$Jf \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 2 & -1 & 3 \end{bmatrix} \qquad Jg \begin{pmatrix} f \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 0 & -1 \end{pmatrix}$$

 $lue{0}$

Aufgabe 3 (5 Punkte)

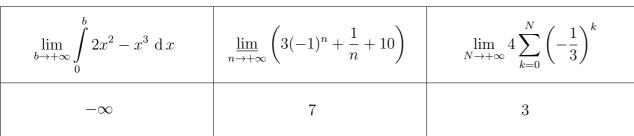
Gegeben sei die folgende Abbildung

$$f: \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}: (x,y) \mapsto \frac{2(x+1)^2 + 1}{y}.$$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, welche die Bedingungen von Lagrange für relative Extrema von f auf der Menge $M := \{(x,y) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \mid y^2 = 1\}$ beschreiben.

$$\frac{4(x+1)}{y} = 0$$

$$-\frac{2(x+1)^2 + 1}{y^2} + 2\lambda y = 0$$

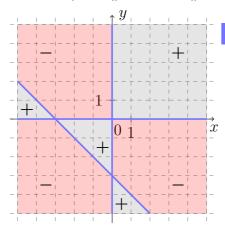

$$y^2 - 1 = 0$$

(b) Bestimmen Sie alle kritischen Stellen von f auf M und geben Sie den Funktionswert sowie den Typ an.

Stelle	Funktionswert	Тур
(-1, -1)	-1	relatives Maximum
(-1,1)	1	relatives Minimum

Aufgabe 4 (3 Punkte)

Berechnen Sie:

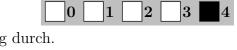

+2000/2/57+

Aufgabe 5 (8 Punkte)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto xy(y+x+3)$.

(a) Skizzieren Sie die Nullstellenmenge $N := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}$ von f für $-5 \le x \le 5$ und $-5 \le y \le 5$, und markieren Sie die Bereiche, in denen f positive bzw. negative Werte annimmt, mit "+" bzw. "-".

(b) Berechnen Sie: $\operatorname{grad} f(x, y) =$


$$\begin{pmatrix} y(2x+y+3) \\ x(x+2y+3) \end{pmatrix}$$

(c) Bestimmen Sie alle kritischen Stellen von f und geben Sie jeweils deren Typ an.

Stelle	Тур
(0,0)	Sattelpunkt
(-3,0)	Sattelpunkt
(-3,0) (0,-3) (-1,-1)	Sattelpunkt
(-1, -1)	lokales Maximum

(d) Bestimmen Sie die Tangente an die Niveaulinie $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = -3\}$ im Punkt (1,-1).

Aufgabe 6 (4 Punkte)

Führen Sie eine Polynomdivision sowie eine Partialbruchzerlegung durch.

(a) Polynomdivision:

$$\frac{3x^2 + 6x - 3}{x^2 + x - 2} =$$

$$3 + \frac{3x+3}{x^2 + x - 2}$$

(b) Partialbruchzerlegung:

$$\frac{3x^2 + 6x - 3}{x^2 + x - 2} =$$

$$3 + \frac{1}{x+2} + \frac{2}{x-1}$$

Gegeben ist die Funktion in Potenzreihendarstellung

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sum_{n=1}^{\infty} \frac{2(-25)^n}{(2n-1)!} x^{4n-1}.$$

(a) Geben Sie die Stammfunktion F von f mit F(0) = 1 als Potenzreihe an.

$$F(x) = \sum_{n=0}^{\infty} \frac{(-25)^n}{(2n)!} x^{4n}$$

(b) Stellen Sie F(x) und f(x) jeweils in geschlossener Form dar.

$$F(x) = \cos(5x^2)$$
 , $f(x) = -10x\sin(5x^2)$

Aufgabe 8 (5 Punkte)

Für Konstanten $a, b \in \mathbb{R}$ ist die Parametrisierung

$$C \colon [0,1] \to \mathbb{R}^2 \colon t \mapsto \begin{pmatrix} t \\ at+b \end{pmatrix}$$

einer Kurve K gegeben.

(a) Bestimmen Sie die Konstanten a, b so, dass C eine Kurve K von $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ nach $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ parametrisiert.

$$a = \boxed{ -2 }$$
 $b = \boxed{ }$ 3

- (b) Bestimmen Sie die Länge der Kurve K aus (a). $L(K) = \sqrt{5}$
- (c) Gegeben sei das Vektorfeld

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 10x_1 \\ -2 \end{pmatrix}.$$

Bestimmen Sie ein Potential U von f so, dass U(0,0) = -2 gilt.

$$U\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 5x_1^2 - 2x_2 - 2$$

Berechnen Sie das folgende Kurvenintegral von f längs K aus (a).

$$\int_{K} f(x) \cdot dx = 9$$

+3000/1/56+

Scheinklausur Höhere Mathematik 2 5. 2. 2019

Beachten Sie die folgenden **Hinweise**:

$oxed{1}$	4
-----------	---

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2 + 1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	$\frac{1}{x}$	$-\sin x$	$\frac{1}{1+x^2}$	$\sinh x$	$\frac{1}{\sqrt{x^2 - 1}}$

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-	0000000	\bigcirc 0 \bigcirc 0
kelnummer und Ihre Übungsgruppennum-		
mer, indem Sie die entsprechenden Kästen	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ausfüllen. Tragen Sie außerdem Ihren Namen		3 3
und Ihre Matrikelnummer in die unten ste-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4
henden Felder ein.	5 5 5 5 5 5 5	
Name, Vorname:		66
		7
Matrikelnummer:		8 8
	9999999	

Gegeben sind die Abbildungen

$$f \colon \mathbb{R}^3 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_2 - 1 \\ -x_1 + x_2 - 3x_3 \end{pmatrix}, \quad g \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto 2y_2.$$

Berechnen Sie die Jacobi-Matrizen Jf und Jg(f(x)).

$$Jf \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 0 & 2 & 0 \\ -1 & 1 & -3 \end{pmatrix} \qquad Jg \begin{pmatrix} f \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 $\mathbf{1}$

Aufgabe 3 (5 Punkte)

Gegeben sei die folgende Abbildung

$$f: (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \to \mathbb{R}: (x,y) \mapsto \frac{2(y+1)^2 + 2}{x}.$$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, welche die Bedingungen von Lagrange für relative Extrema von f auf der Menge $M := \{(x, y) \in (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \mid x^2 = 1\}$ beschreiben.

$$-\frac{2(y+1)^{2}+2}{x^{2}} +2\lambda x = 0$$

$$\frac{4(y+1)}{x} = 0$$

$$x^{2}-1 = 0$$

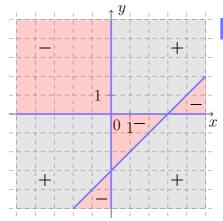
(b) Bestimmen Sie alle kritischen Stellen von f auf M und geben Sie den Funktionswert sowie den Typ an.

Stelle	Funktionswert	Тур
(-1, -1)	-2	relatives Maximum
(1,-1)	2	relatives Minimum

Aufgabe 4 (3 Punkte)

Berechnen Sie:

$\overline{\lim_{n \to +\infty}} \left(2(-1)^n + \frac{1}{n} - 7 \right)$	$\lim_{N \to +\infty} 4 \sum_{k=0}^{N} \left(\frac{1}{3}\right)^k$	$\lim_{b \to +\infty} \int_{0}^{b} 4x^{2} - x^{3} \mathrm{d} x$
-5	6	$-\infty$

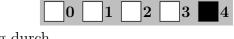

+3000/2/55+

Aufgabe 5 (8 Punkte)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto xy(y-x+3)$.

(a) Skizzieren Sie die Nullstellenmenge $N:=\{(x,y)\in\mathbb{R}^2\,|\,f(x,y)=0\}$ von f für $-5\leqq x\leqq 5$ und $-5\leqq y\leqq 5$, und markieren Sie die Bereiche, in denen f positive bzw. negative Werte annimmt, mit "+" bzw. "-".

(b) Berechnen Sie: $\operatorname{grad} f(x,y) =$


$$\begin{pmatrix} y(-2x+y+3) \\ x(-x+2y+3) \end{pmatrix}$$

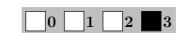
(c) Bestimmen Sie alle kritischen Stellen von f und geben Sie jeweils deren Typ an.

Stelle	Тур
(0,0)	Sattelpunkt
(3,0)	Sattelpunkt
(0, -3) $(1, -1)$	Sattelpunkt
(1,-1)	lokales Minimum

(d) Bestimmen Sie die Tangente an die Niveaulinie $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 3\}$ im Punkt (-1,-1).

Aufgabe 6 (4 Punkte)

Führen Sie eine Polynomdivision sowie eine Partialbruchzerlegung durch.


(a) Polynomdivision:

$$\frac{x^2 + 5x - 1}{-3x + 2} = -2 + \frac{-x + 3}{x^2 - 3x + 2}$$

(b) Partialbruchzerlegung:

$$\frac{-2x^2 + 5x - 1}{x^2 - 3x + 2} =$$

 $-2 - \frac{2}{x-1} + \frac{1}{x-2}$

Gegeben ist die Funktion in Potenzreihendarstellung

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \sum_{n=1}^{\infty} \frac{2(-16)^n}{(2n-1)!} x^{4n-1}.$$

(a) Geben Sie die Stammfunktion F von f mit F(0) = 1 als Potenzreihe an.

$$F(x) = \sum_{n=0}^{\infty} \frac{(-16)^n}{(2n)!} x^{4n}$$

(b) Stellen Sie F(x) und f(x) jeweils in geschlossener Form dar.

$$F(x) = \cos(4x^2)$$
 , $f(x) = -8x\sin(4x^2)$

Aufgabe 8 (5 Punkte)

Für Konstanten $a, b \in \mathbb{R}$ ist die Parametrisierung

$$C \colon [0,1] \to \mathbb{R}^2 \colon t \mapsto \begin{pmatrix} t \\ at+b \end{pmatrix}$$

einer Kurve K gegeben.

(a) Bestimmen Sie die Konstanten a, b so, dass C eine Kurve K von $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$ nach $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ parametrisiert.

$$a = \boxed{ }$$
 $3 \qquad b = \boxed{ }$ 2

- (b) Bestimmen Sie die Länge der Kurve K aus (a). $L(K) = \sqrt{10}$
- (c) Gegeben sei das Vektorfeld

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -4x_1 \\ 5 \end{pmatrix}.$$

Bestimmen Sie ein Potential U von f so, dass U(0,0)=3 gilt.

$$U\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -2x_1^2 + 5x_2 + 3$$

Berechnen Sie das folgende Kurvenintegral von f längs K aus (a).

$$\int_{K} f(x) \cdot dx =$$
 13

+4000/1/54+

Scheinklausur Höhere Mathematik 2 5. 2. 2019

Beachten Sie die folgenden **Hinweise**:

\square 1	\Box 2	3	4
-------------	----------	---	---

- Bearbeitungszeit: 90 Minuten
- Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- Eintragungen mit Bleistift oder Rotstift werden nicht gewertet.
- Die grau hinterlegten Kästchen dienen der Korrekturauswertung und sind freizulassen.
- Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.
- Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein.

f(x)	x^a	e^x	$\sin x$	$\tan x$	$\sinh x$	$\operatorname{arsinh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$a x^{a-1}$	e^x	$\cos x$	$\frac{1}{\left(\cos(x)\right)^2}$	$\cosh x$	$\frac{1}{\sqrt{x^2+1}}$
f(x)	b^x	$\ln x $	$\cos x$	$\arctan x$	$\cosh x$	$\operatorname{arcosh} x$
$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$	$\ln(b) b^x$	1	$-\sin x$	1	$\sinh x$	1

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$
$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

 $a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}^+$

Viel Erfolg!

Aufgabe 1 (1 Punkt)	Matrikelnummer:	Gruppe:
Kodieren Sie in den Feldern Ihre Matri-	0000000	oo
kelnummer und Ihre Übungsgruppennum-		$ \boxed{ 1 \boxed{ 1} }$
mer, indem Sie die entsprechenden Kästen	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ausfüllen. Tragen Sie außerdem Ihren Namen	$\boxed{3} \boxed{3} $	3
und Ihre Matrikelnummer in die unten ste-		4
henden Felder ein.	5 5 5 5 5 5 5	
Name, Vorname:		
Matrikelnummer:	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	8 8
	$\boxed{9 \boxed{9} $	

Luigabe 2 (2 Punkte)

Gegeben sind die Abbildungen

$$f \colon \mathbb{R}^3 \to \mathbb{R}^2 \colon \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 3x_1 - 2x_2 + x_3 \\ 4x_1 - 1 \end{pmatrix}, \quad g \colon \mathbb{R}^2 \to \mathbb{R} \colon \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto -y_1.$$

 $lue{0}$

Berechnen Sie die Jacobi-Matrizen Jf und Jg(f(x)).

$$Jf \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 3 & -2 & 1 \\ 4 & 0 & 0 \end{bmatrix} \qquad Jg \begin{pmatrix} f \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} -1 & 0 \end{pmatrix}$$

Aufgabe 3 (5 Punkte)

Gegeben sei die folgende Abbildung

$$f: \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}: (x,y) \mapsto \frac{2(x-1)^2 + 2}{y}.$$

(a) Geben Sie die drei Gleichungen (in x, y und λ) an, welche die Bedingungen von Lagrange für relative Extrema von f auf der Menge $M := \{(x,y) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \mid y^2 = 1\}$ beschreiben.

$$\frac{4(x-1)}{y} = 0$$

$$-\frac{2(x-1)^2 + 2}{y^2} + 2\lambda y = 0$$

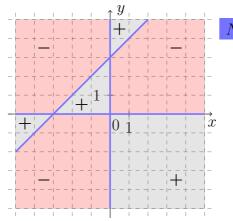
$$y^2 - 1 = 0$$

(b) Bestimmen Sie alle kritischen Stellen von f auf M und geben Sie den Funktionswert sowie den Typ an.

Stelle	Funktionswert	Тур
(1,-1)	-2	relatives Maximum
(1,1)	2	relatives Minimum

Aufgabe 4 (3 Punkte)

Berechnen Sie:


$\lim_{N \to +\infty} 5 \sum_{k=0}^{N} \left(\frac{1}{2}\right)^k$	$\lim_{b \to +\infty} \int_{0}^{b} 7x^{2} - x^{3} \mathrm{d}x$	$\overline{\lim}_{n \to +\infty} \left(5(-1)^n - \frac{1}{n} - 7 \right)$
10	$-\infty$	-2

+4000/2/53+

Aufgabe 5 (8 Punkte)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto xy(y-x-3)$.

(a) Skizzieren Sie die Nullstellenmenge $N:=\{(x,y)\in\mathbb{R}^2\,|\,f(x,y)=0\}$ von f für $-5\leqq x\leqq 5$ und $-5\leqq y\leqq 5$, und markieren Sie die Bereiche, in denen f positive bzw. negative Werte annimmt, mit "+" bzw. "-".

(b) Berechnen Sie: $\operatorname{grad} f(x,y) =$

$$\begin{pmatrix} y(-2x+y-3) \\ x(-x+2y-3) \end{pmatrix}$$

(c) Bestimmen Sie alle kritischen Stellen von f und geben Sie jeweils deren Typ an.

Stelle	Тур
(0,0)	Sattelpunkt
(-3,0)	Sattelpunkt
(0,3)	Sattelpunkt
(-1,1)	lokales Maximum

(d) Bestimmen Sie die Tangente an die Niveaulinie $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = -3\}$ im Punkt (-1,-1).

Aufgabe 6 (4 Punkte)

Führen Sie eine Polynomdivision sowie eine Partialbruchzerlegung durch.

(a) Polynomdivision:

$$\frac{-3x^2 - 8x - 6}{x^2 + 3x + 2}$$

$$-3 + \frac{x}{x^2 + 3x + 3}$$

(b) Partialbruchzerlegung:

$$\frac{-3x^2 - 8x - 6}{x^2 + 3x + 2} :$$

$$-3 + \frac{2}{x+2} - \frac{1}{x+1}$$