I. Steinwart

Sommersemester 2023

Übungsblatt 14

Aufgabe 54. Satz über implizite Funktionen

Gegeben ist die Menge

$$K = \{(x, y) \in \mathbb{R}^2 : x^3 - xy + y^2 = 3\}.$$

- (a) Zeigen Sie, dass $(1,2) \in K$.
- **(b)** Bestimmen Sie die Gleichung der Tangente an K im Punkt (1,2).
- (c) Zeigen Sie, dass es ein Intervall $U \subset \mathbb{R}$ mit $1 \in U$ und eine differenzierbare Funktion $f \colon U \to \mathbb{R}$ gibt, so dass

$$\{(x, f(x)) : x \in U\} \subset K.$$

(d) Zeigen Sie, dass es außerdem ein Intervall $V \subset \mathbb{R}$ mit $2 \in V$ und eine differenzierbare Funktion $g \colon V \to \mathbb{R}$ gibt, so dass

$$\{(g(y), y) : y \in V\} \subset K.$$

Aufgabe 55. Extrema mit Nebenbedingungen

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = e^y(y^2 - 2x^2).$$

- (a) Bestimmen Sie Maximum und Minimum der Funktion f unter der Nebenbedingung $g(x,y)=2x^2+y^2=6.$
- (b) Bestimmen Sie Maximum und Minimum von f auf der Menge

$$M = \{(x, y) \in \mathbb{R}^2 : 2x^2 + y^2 \le 6\}$$
.

Aufgabe 56. Kurvenparametrisierung und Kurvenlänge

(a) Bestimmen Sie eine Parametrisierung der Schnittmenge der folgenden zwei Flächen in \mathbb{R}^3 :

$$yz + x = 1,$$
 $xz - x = 1.$

(b) Zeigen Sie, dass die Länge der logarithmischen Spirale $c \colon [0,\infty) \to \mathbb{R}^2$ mit

$$c(t) = e^{-t} \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix},$$

endlich ist und bestimmen Sie außerdem die Länge.

(c) Sei $f: [-1,1] \to \mathbb{R}^2$ gegeben durch

$$f(x) = \begin{pmatrix} \arcsin(x) \\ \sqrt{1 - x^2} \end{pmatrix}$$
.

Berechnen Sie die Länge des Graphen

$$\Gamma_f = \{(x, f(x)) \in \mathbb{R}^3 : x \in [-1, 1]\}$$

 $\quad \text{von } f.$

Aufgabe 57. Kurvenintegral

Gegeben sei die Kurve $\gamma \colon [0, \ln 2] \to \mathbb{R}^3$ mit $\gamma(t) = (\sinh(t), \cosh(t), \sinh(t))^\top$ sowie das Vektorfeld $v \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit $v(x_1, x_2, x_3) = (x_2, -x_3, x_1)^\top$.

(a) Berechnen Sie

$$\int_{\gamma} \langle v(x), \mathrm{d}x \rangle.$$

(b) Ist dieses Kurvenintegral bei dem gegebenen Vektorfeld v wegunabhängig? Begründen Sie Ihre Antwort.