R. A. Lainez Reyes,

Präsenzübungen

Aufgabe P 81. Geschlossene Formeln durch Integration

Gegeben sei die Reihe

$$f(x) = \sum_{n=0}^{\infty} (n+1)x^n.$$

- (a) Berechnen Sie den Konvergenzradius ρ von f.
- **(b)** Berechnen Sie eine Stammfunktion F der Funktion $f:(-\rho,\rho)\to\mathbb{R}$.
- (c) Geben Sie eine geschlossene Formel für F an. Hinweis: Geometrische Reihe.
- (d) Geben Sie eine geschlossene Formel für f an, indem sie F differenzieren.

Aufgabe P 82. Majoranten- und Grenzwertkriterium

Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz.

(a)
$$\int_0^{+\infty} \frac{1}{e^x} dx$$

(c)
$$\int_{1}^{+\infty} \frac{\cos(x) - 1}{x^2} dx$$

(b)
$$\int_{0+0}^{1} \frac{\cos(x) - 1}{x^2} dx$$

(d)
$$\int_{1}^{+\infty} \frac{x^2 + x - 7}{x^4 + 2x^3 + x^2} \, \mathrm{d} x$$

Aufgabe P 83. Uneigentliche Integrale

Berechnen Sie die folgenden uneigentlichen Integrale.

(a)
$$\int_{1}^{+\infty} \frac{1}{x^2} dx$$

(b)
$$\int_0^{+\infty} \frac{1}{1+x^2} \, \mathrm{d} x$$
 (c) $\int_0^{+\infty} \frac{x}{e^x} \, \mathrm{d} x$

(c)
$$\int_0^{+\infty} \frac{x}{e^x} \, \mathrm{d} x$$

Aufgabe P 84. Hauptsatz der Integralrechnung

Seien $f, g: \mathbb{R} \to \mathbb{R}$ unendlich oft stetig differenzierbar. Vereinfachen Sie so weit wie möglich.

(a)
$$\int_0^x f'(g(t))g'(t) dt$$

(a)
$$\int_0^x f'(g(t))g'(t) dt$$
 (b) $\frac{d}{dx} \int_0^x f(g(f(t))) dt$ (c) $\frac{d}{dx} \int_0^{x^2} f(t) dt$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{-x}^{x^2} f(t) \, \mathrm{d}x$$

Online-Aufgabe

Sie finden Ihre Online-Aufgabe (Bearbeitungszeit 13.06. – 19.06.) auf folgender Webseite.

http://mo.mathematik.uni-stuttgart.de/tests/test430/

Hausübungen (Abgabe in ILIAS):

Aufgabe H 106. Geschlossene Formeln

Berechnen Sie geschlossene Formeln für die folgenden Potenzreihen.

(a)
$$\sum_{n=0}^{\infty} (n^2 + 3n + 2)x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{2}{n} x^n$$

Tipp: Führen Sie einen Sanity-check durch, d.h. überprüfen Sie beispielsweise durch Einsetzen, dass Ihre geschlossene Formel für x = 0 korrekt ist.

Aufgabe H 107. Majoranten- und Grenzwertkriterium

Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz.

(a)
$$\int_{1}^{+\infty} \frac{\ln(x)}{e^x} dx$$

(c)
$$\int_{20}^{+\infty} \frac{1}{(\ln(x^{24}))^3} dx$$

(b)
$$\int_{-1}^{0-0} \frac{-1}{\sin(x)} \, \mathrm{d} x$$

(d)
$$\int_{1}^{+\infty} \frac{1}{\sqrt{x^2 + x}} \, \mathrm{d} x$$

Aufgabe H 108. Uneigentliche Integrale

Berechnen Sie die folgenden uneigentlichen Integrale.

(a)
$$\int_{2}^{+\infty} \frac{1}{x^2 - 1} \, \mathrm{d} x$$

(b)
$$\int_{0.10}^{1} \ln(x) \, \mathrm{d} x$$

(a)
$$\int_{2}^{+\infty} \frac{1}{x^2 - 1} dx$$
 (b) $\int_{0+0}^{1} \ln(x) dx$ (c) $\int_{0}^{+\infty} \frac{1}{(x^2 + 1)^2} dx$ (d) $\int_{0}^{+\infty} \frac{x^4}{e^x} dx$

Aufgabe H 109. Geschlossene Formeln II (2+1+1)

Geben Sie geschlossene Formeln für die folgenden Ausdrücke an.

(a)
$$\sum_{n=5}^{\infty} n^2 x^n$$

(b)
$$\sum_{n=5}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n+1}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n!} x^{2n}$$

Frischhaltebox

Aufgabe H 110.

Gegeben sei die Matrix $A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Berechnen Sie A^{2024} .