Differentialgeometrie für Geodäten

Lösung 8

Hausaufgabe 15

Es parametrisiert $\Phi(\varphi, \psi) = \begin{pmatrix} \cos(\varphi) \\ \cos(\psi)(2+\sin(\varphi)) \\ \sin(\psi)(2+\sin(\varphi)) \end{pmatrix}$ mit $\varphi, \psi \in [-\pi, \pi]$ einen Torus T. Vgl. Hausaufgaben 5, 9, 11, 13.

- (a) Man bestimme für jeden Punkt von T die Hauptkrümmungen und Hauptkrümmungsvektoren.
- (b) Wo liegen die Punkte auf T mit Hauptkrümmungen von verschiedenem Vorzeichen? Welches Vorzeichen hat dort die Gaußsche Krümmung?
- (c) Wir betrachten die Stelle $\begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \begin{pmatrix} \pi/2 \\ 0 \end{pmatrix}$.

Man parametrisiere Kurven auf T, welche durch $\Phi(\frac{\pi}{2},0)$ laufen und welche die Hauptkrümmungen bis auf Vorzeichen an dieser Stelle als Krümmungen haben.

Man skizziere T mit beiden Kurven darin.

Man berechne deren Krümmung an dieser Stelle direkt und vergleiche.

Lösung.

(a) Aus Hausaufgabe 13(d) wissen wir

$$\begin{pmatrix} E F \\ F G \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & (2+\sin(\varphi))^2 \end{pmatrix}$$
$$\begin{pmatrix} L & M \\ M & N \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -\sin(\varphi)(2+\sin(\varphi)) \end{pmatrix}.$$

Also ist die Weingarten-Matrix an der Stelle $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}$ gegeben durch

$$W = \begin{pmatrix} E F \\ F G \end{pmatrix}^{-1} \begin{pmatrix} L M \\ M N \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & (2+\sin(\varphi))^{-2} \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -\sin(\varphi)(2+\sin(\varphi)) \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -\frac{\sin(\varphi)}{2+\sin(\varphi)} \end{pmatrix}.$$

Die Matrix W hat die Eigenwerte $\lambda_1=-1$ und $\lambda_2=-\frac{\sin(\varphi)}{2+\sin(\varphi)}$ und zuhörige Eigenvektoren $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Also hat jeder Punkt $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}$ auf T die Hauptkrümmungen $\lambda_1 = -1$ und $\lambda_2 = -\frac{\sin(\varphi)}{2+\sin(\varphi)}$ und Hauptkrümmungsvektoren $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b) Zu finden sind die Stellen auf T mit $\lambda_1 \lambda_2 \stackrel{!}{<} 0$.

Wir haben

$$\lambda_1 \lambda_2 = -1 \cdot \left(-\frac{\sin(\varphi)}{2 + \sin(\varphi)} \right) = \frac{\sin(\varphi)}{2 + \sin(\varphi)} \stackrel{!}{<} 0.$$

Also

$$\sin(\varphi) \stackrel{!}{<} 0 \quad \Rightarrow \quad \varphi \stackrel{!}{\in} (-\pi, 0) \ .$$

Somit sind $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}$ mit $\varphi \in (-\pi, 0)$ die gesuchten Stellen.

Für die Gaußsche Krümmung gilt: $K_{Gauß} = \lambda_1 \lambda_2$. Also ist $K_{Gauß} < 0$ an jeder Stelle $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}$ mit $\varphi \in (-\pi, 0)$.

Zum Vergleich: Aus Hausaufgabe 11 kennen wir die Gaußsche Krümmung bei $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}$:

$$K_{Gauß} = \frac{\sin(\varphi)}{2 + \sin(\varphi)}$$
 .

Dies bestätigt nochmals den Zusammenhang von Gaußscher Krümmung und Hauptkrümmungen.

(c) Sei
$$P_0 := \Phi(\frac{\pi}{2}, 0) = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$$
.

Wir verwenden Kurven wie in der Definition der Weingarten-Matrix in §3.2.2 beschrieben, sogenannte Normalschnitte. Wählt man für einen solchen Normalschnitt eine Parametrisierung $c: I \to D$, für welche c' an der betrachteten Stelle eine Hauptkrümmungsrichtung ist, dann hat die resultierende Kurve, die von $\Phi \circ c$ parametrisiert wird, dort die zugehörige Hauptkrümmung als Krümmung.

Diese Normalschnitte sind gerade die Kreise auf T, die man durch Konstanthalten von ψ resp. von φ erhält:

Sei $c_{(1)}(\varphi) := \begin{pmatrix} \varphi \\ 0 \end{pmatrix}$ mit $\varphi \in [-\pi, \pi]$ eine Parametrisierung.

Wir zeigen, dass $c'_{(1)}$ ein Hauptkrümmungsvektor bei $\varphi = \frac{\pi}{2}$ ist.

Wir haben

$$c'_{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = v_1.$$

Also ist $c_{(1)}'$ ein Hauptkrümmungsvektor bei $\varphi=\frac{\pi}{2}\,.$

Sei $K_{(1)}$ die Kurve auf T, die durch

$$C_{(1)}(\varphi) := \Phi\left(c_{(1)}(\varphi)\right) = \begin{pmatrix} \cos(\varphi) \\ 2+\sin(\varphi) \\ 0 \end{pmatrix}$$

parametrisiert wird.

Wir zeigen, dass $K_{(1)}$ ein Normalschnitt von T in P_0 ist.

An der Stelle $\varphi = \frac{\pi}{2}$ wird

$$C_{(1)}\left(\frac{\pi}{2}\right) = \begin{pmatrix} 0\\3\\0 \end{pmatrix} = P_0.$$

Also verläuft $K_{(1)}$ durch den Punkt P_0 .

Wir betrachten die x_1 - x_2 -Ebene $E_1 := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_3 = 0 \right\}$.

Wir haben

$$\mathfrak{n} := \Phi_{\varphi}\left(\frac{\pi}{2}, 0\right) \times \Phi_{\psi}\left(\frac{\pi}{2}, 0\right) = \begin{pmatrix} -1\\0\\0 \end{pmatrix} \times \begin{pmatrix} 0\\0\\3 \end{pmatrix} = \begin{pmatrix} 0\\3\\0 \end{pmatrix}.$$

Die Ebene $E_{(1)}$ enthält den Punkt $P_0 = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$ und die Gerade

$$\{P_0 + r\mathfrak{n} \colon r \in \mathbb{R}\} = \left\{ \begin{pmatrix} 0\\3+3r\\0 \end{pmatrix} \colon r \in \mathbb{R} \right\}.$$

Ferner enthält $E_{(1)}$ die Kurve $K_{(1)}$. Also ist insbesondere $K_{(1)} \subseteq T \cap E_{(1)}$.

Somit ist $K_{(1)}$ ein Normalschnitt von T in P_0 .

Mit diesen beiden Eigenschaften gilt dann

$$\lambda_1 = \kappa \cdot \underbrace{\cos(\nu)}_{+1} .$$

Also stimmt für die Hauptkrümmung λ_1 bis auf Vorzeichen mit der Krümmung κ an der betrachteten Stelle überein.

Wir verifizieren dieses Ergebnis an der Stelle $\binom{\pi/2}{0}$ mit einer direkten Rechnung.

Die Kurve $K_{(1)}$ ist ein Kreis mit Radius $\rho=1$.

An der Stelle $\binom{\pi/2}{0}$ ist die Krümmung also gegeben durch

$$\kappa = \frac{1}{\rho} = 1$$
.

Die Hauptkrümmung zum Hauptkrümmungsvektor $\binom{1}{0}$ ist gegeben durch

$$\lambda_1 = -1$$
.

Dies zeigt, dass κ und λ_1 bis auf Vorzeichen übereinstimmen.

Sei $c_{(2)}(\psi) := \begin{pmatrix} \frac{\pi}{2} \\ \psi \end{pmatrix}$ mit $\psi \in [-\pi, \pi]$ eine Parametrisierung.

Wir zeigen, dass $c_{(2)}'$ ein Hauptkrümmungsvektor bei $\psi=0$ ist.

Wir haben

$$c'_{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = v_2.$$

Also ist $c'_{(2)}$ ein Hauptkrümmungsvektor bei $\psi = 0$.

Sei $K_{(2)}$ die Kurve auf T, die durch

$$K_{(2)} := \Phi\left(c_{(2)}(\psi)\right) = \begin{pmatrix} 0\\ 3\cos(\psi)\\ 3\cos(\psi) \end{pmatrix}$$

parametrisiert wird.

Wir zeigen, dass $K_{(2)}$ ein Normalschnitt von T in P_0 ist.

An der Stelle $\psi = 0$ wird

$$C_{(2)}\left(0\right) = \begin{pmatrix} 0\\3\\0 \end{pmatrix} = P_0.$$

Also verläuft $K_{(2)}$ durch den Punkt P_0 .

Wir betrachten die x_2 - x_3 -Ebene $E_{(2)}:=\left\{\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}:x_1=0\right\}$.

Wir haben wieder

$$\mathfrak{n} = \Phi_{\varphi}\left(\frac{\pi}{2}, 0\right) \times \Phi_{\psi}\left(\frac{\pi}{2}, 0\right) = \begin{pmatrix} -1\\0\\0 \end{pmatrix} \times \begin{pmatrix} 0\\0\\3 \end{pmatrix} = \begin{pmatrix} 0\\3\\0 \end{pmatrix}.$$

Die Ebene $E_{(2)}$ enthält den Punkt $P_0 = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$ und die Gerade

$$\{P_0 + r\mathfrak{n} \colon r \in \mathbb{R}\} = \left\{ \begin{pmatrix} 0\\ 3+3r\\ 0 \end{pmatrix} \colon r \in \mathbb{R} \right\}.$$

Ferner enthält $E_{(2)}$ die Kurve $K_{(2)}$. Also ist insbesondere $K_{(2)}\subseteq T\cap E_{(2)}$.

Somit ist $K_{(2)}$ ein Normalschnitt von T in P_0 .

Mit diesen beiden Eigenschaften gilt dann

$$\lambda_2 = \kappa \cdot \underbrace{\cos(\nu)}_{+1} .$$

Also stimmt die Hauptkrümmung λ_2 bis auf Vorzeichen mit der Krümmung κ an der betrachteten Stelle überein.

Wir verifizieren dieses Ergebnis an der Stelle $\binom{\pi/2}{0}$ mit einer direkten Rechnung.

Die Kurve $K_{(2)}$ ist ein Kreis mit Radius $\rho=3$.

An der Stelle $\binom{\pi/2}{0}$ ist die Krümmung also gegeben durch

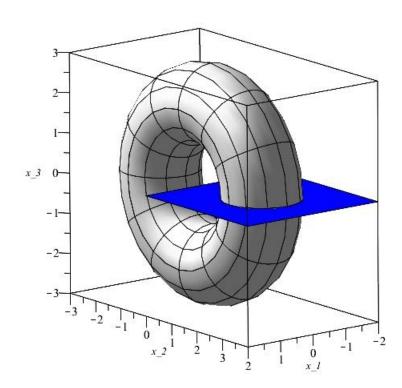
$$\kappa = \frac{1}{\rho} = \frac{1}{3}$$
.

Die Hauptkrümmung zum Hauptkrümmungsvektor $\binom{0}{1}$ ist gegeben durch

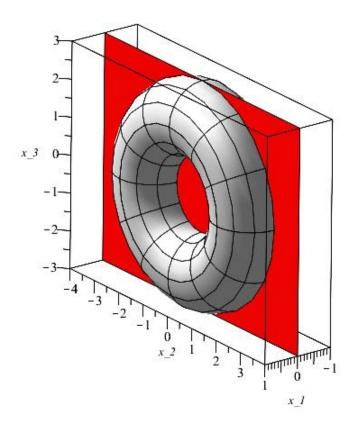
$$\lambda_2 = -\frac{\sin(\pi/2)}{2 + \sin(\pi/2)} = -\frac{1}{3}$$
.

Dies zeigt, dass κ und λ_2 bis auf Vorzeichen übereinstimmen.

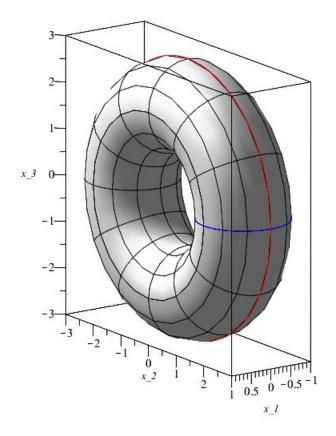
Eine Grafik mit dem Torus T und der x_1 - x_2 -Ebene $E_{(1)}$ (blau).



Eine Grafik mit dem Torus T und der x_2 - x_3 -Ebene $E_{(2)}$ (rot).



Eine Grafik mit dem Torus T und den Kurven $K_{(1)}$ (blau) und $K_{(2)}$ (rot).



Hausaufgabe 16

Es parametrisiert $\Phi(u,v) = \begin{pmatrix} u \\ v \\ u^2 - v^2 \end{pmatrix}$ für $\begin{pmatrix} u \\ v \end{pmatrix} \in D := \mathbb{R}^2$ ein hyperbolisches Paraboloid P. Vgl. Hausaufgaben 7, 10.

(a) Man bestimme an der Stelle $\binom{u}{v} = \binom{0}{0}$ die Hauptkrümmungen.

Man parametrisiere Kurven auf P, welche durch $\Phi(0,0)$ laufen und welche die Haupt-krümmungen bis auf Vorzeichen an dieser Stelle als Krümmungen haben.

Man skizziere P mit beiden Kurven darin.

Man berechne deren Krümmung an dieser Stelle direkt und vergleiche.

(b) Man bestimme an der Stelle $\binom{u}{v} = \binom{2}{1}$ die Hauptkrümmungen und zugehörige Hauptkrümmungsvektoren.

Lösung.

Aus Hausaufgabe 7 wissen wir

$$\Phi_{u} = \begin{pmatrix} 1\\0\\2u \end{pmatrix}, \quad \Phi_{v} = \begin{pmatrix} 0\\1\\-2v \end{pmatrix}$$

$$\Phi_{uu} = \begin{pmatrix} 0\\0\\2 \end{pmatrix}, \quad \Phi_{uv} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \quad \Phi_{vv} = \begin{pmatrix} 0\\0\\-2 \end{pmatrix},$$

$$\begin{pmatrix} EF\\FG \end{pmatrix} = \begin{pmatrix} 1+4u^2 & -4uv\\-4uv & 1+4v^2 \end{pmatrix}$$

und

$${\begin{pmatrix} E F \\ F G \end{pmatrix}}^{-1} = {\begin{pmatrix} 1+4u^2 & -4uv \\ -4uv & 1+4v^2 \end{pmatrix}}^{-1} = \frac{1}{4(u^2+v^2)+1} {\begin{pmatrix} 1+4v^2 & 4uv \\ 4uv & 1+4u^2 \end{pmatrix}} .$$

Wir berechnen L, M und N an der Stelle $\binom{u}{v}$.

Wir haben

$$\Phi_u \times \Phi_v = \begin{pmatrix} -2u \\ 2v \\ 1 \end{pmatrix}$$

und

$$EG - F^2 = 4(u^2 + v^2) + 1.$$

Also ist

$$\begin{split} h_{11} &= \frac{1}{EG - F^2} \left\langle \Phi_{uu} \middle| \Phi_u \times \Phi_v \right\rangle = \frac{2}{4(u^2 + v^2) + 1} \\ h_{12} &= \frac{1}{EG - F^2} \left\langle \Phi_{uv} \middle| \Phi_u \times \Phi_v \right\rangle = \quad 0 \\ h_{22} &= \frac{1}{EG - F^2} \left\langle \Phi_{vv} \middle| \Phi_u \times \Phi_v \right\rangle = -\frac{2}{4(u^2 + v^2) + 1} \,, \end{split}$$

und somit

$$\begin{pmatrix} L & M \\ M & N \end{pmatrix} = \sqrt{EG - F^2} \begin{pmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{pmatrix} = \frac{2}{\sqrt{4(u^2 + v^2) + 1}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} .$$

(a) An der Stelle $\binom{u}{v} = \binom{0}{0}$ haben wir

$$\begin{pmatrix} E F \\ F G \end{pmatrix}^{-1} = \begin{pmatrix} 1 0 \\ 0 1 \end{pmatrix}$$
 und $\begin{pmatrix} L M \\ M N \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$.

Also ist die Weingarten-Matrix gegeben durch

$$W = \begin{pmatrix} E F \\ F G \end{pmatrix}^{-1} \begin{pmatrix} L M \\ M N \end{pmatrix} = \begin{pmatrix} 1 0 \\ 0 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

Die Matrix W hat die Eigenwerte $\lambda_1 = 2$ und $\lambda_2 = -2$ und zugehörige Eigenvektoren $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Also hat der Punkt auf P an der Stelle $\binom{u}{v}$ die Hauptkrümmungen $\lambda_1 = 2$ und $\lambda_2 = -2$ und Hauptkrümmungsvektoren $v_1 = \binom{1}{0}$ und $v_2 = \binom{0}{1}$.

Sei
$$P_0 := \Phi(0,0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
.

Wir verwenden Kurven wie in der Definition der Weingarten-Matrix in §3.2.2 beschrieben, sogenannte Normalschnitte. Wählt man für einen solchen Normalschnitt eine Parametrisierung $c:I\to D$, für welche c' an der betrachteten Stelle eine Hauptkrümmungsrichtung ist, dann hat die resultierende Kurve, die von $\Phi \circ c$ parametrisiert wird, dort die zugehörige Hauptkrümmung als Krümmung.

Sei $c_{(1)}(u) := \begin{pmatrix} u \\ 0 \end{pmatrix}$ mit $u \in \mathbb{R}$ eine Parametrisierung.

Wir zeigen, dass $c'_{(1)}$ ein Hauptkrümmungsvektor bei u = 0 ist.

Wir haben

$$c'_{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = v_1.$$

Also ist $c'_{(1)}$ ein Hauptkrümmungsvektor bei u = 0.

Sei $K_{(1)}$ die Kurve auf P, die durch

$$C_{(1)}(u) := \Phi\left(c_{(1)}(u)\right) = \begin{pmatrix} u \\ 0 \\ u^2 \end{pmatrix}$$

parametrisiert wird.

Wir zeigen, dass $K_{(1)}$ ein Normalschnitt von P in P_0 ist.

An der Stelle u = 0 wird

$$C_{(1)}(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = P_0.$$

Also verläuft $K_{(1)}$ durch den Punkt P_0 .

Wir betrachten die x_1 - x_3 -Ebene $E_{(1)}:=\left\{\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}:x_2=0\right\}$.

Wir haben

$$\mathfrak{n} := \Phi_u\left(0,0\right) \times \Phi_v\left(0,0\right) = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Die Ebene $E_{(1)}$ enthält den Punkt $P_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ und die Gerade

$$\{P_0 + r\mathfrak{n} \colon r \in \mathbb{R}\} = \left\{ \begin{pmatrix} 0 \\ 0 \\ r \end{pmatrix} \colon r \in \mathbb{R} \right\}.$$

Ferner enthält $E_{(1)}$ die Kurve $K_{(1)}$. Also ist insbesondere $K_{(1)} \subseteq P \cap E_{(1)}$. Somit ist $K_{(1)}$ ein Normalschnitt von P in P_0 .

Mit diesen beiden Eigenschaften gilt dann

$$\lambda_1 = \kappa \cdot \underbrace{\cos(\nu)}_{\pm 1} .$$

Also stimmt die Hauptkrümmung λ_1 bis auf Vorzeichen mit der Krümmung κ an der betrachteten Stelle überein.

Wir verifizieren dieses Ergebnis an der Stelle $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ mit einer direkten Rechnung.

Die Kurve $K_{(1)}$ wird parametrisiert durch

$$C_{(1)}(u) = \begin{pmatrix} u \\ 0 \\ u^2 \end{pmatrix} .$$

Wir haben

$$C'_{(1)}(u) = \begin{pmatrix} 1\\0\\2u \end{pmatrix}$$
 und $C''_{(1)}(u) = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$.

Ferner haben wir

$$|C'_{(1)}(u)| = \sqrt{1 + 4u^2}, \ C'_{(1)}(u) \times C''_{(1)}(u) = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} \text{ und } |C'_{(1)}(u) \times C''_{(1)}(u)| = 2.$$

Also ist die Krümmung an der Stelle $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ gegeben durch

$$\kappa = \frac{1}{|C'_{(1)}(0)|^3} |C'_{(1)}(0) \times C''_{(1)}(0)| = \frac{1}{(\sqrt{1+4\cdot 0^2})^3} \cdot 2 = 2.$$

Die Hauptkrümmung zum Hauptkrümmungsvektor $\binom{1}{0}$ ist gegeben durch

$$\lambda_1=2$$
.

Dies zeigt, dass κ und λ_1 übereinstimmen. Das Vorzeichen ist hier zufällig dasselbe.

Sei $c_{(2)}(v) := {0 \choose v}$ mit $v \in \mathbb{R}$ eine Parametrisierung.

Wir zeigen, dass $c'_{(2)}$ ein Hauptkrümmungsvektor bei v=0 ist.

Wir haben

$$c'_{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = v_2.$$

Also ist $c'_{(2)}$ ein Hauptkrümmungsvektor bei v=0.

Sei $K_{(2)}$ die Kurve auf P, die durch

$$C_{(2)}(v) := \Phi\left(c_{(2)}(v)\right) = \begin{pmatrix} 0 \\ v \\ -v^2 \end{pmatrix}$$

parametrisiert wird.

Wir zeigen, dass $K_{(2)}$ ein Normalschnitt von P in P_0 ist.

An der Stelle v = 0 wird

$$C_{(2)}(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = P_0.$$

Also verläuft $K_{(2)}$ durch den Punkt P_0 .

Wir betrachten die x_2 - x_3 -Ebene $E_{(2)} := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 = 0 \right\}$.

Wir haben wieder

$$\mathfrak{n} = \Phi_u(0,0) \times \Phi_v(0,0) = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Die Ebene $E_{(2)}$ enthält den Punkt $P_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ und die Gerade

$$\{P_0 + r\mathfrak{n} \colon r \in \mathbb{R}\} = \left\{ \begin{pmatrix} 0 \\ 0 \\ r \end{pmatrix} \colon r \in \mathbb{R} \right\}.$$

Ferner enthält $E_{(2)}$ die Kurve $K_{(2)}$. Also ist insbesondere $K_{(2)}\subseteq P\cap E_{(2)}$.

Somit ist $K_{(2)}$ ein Normalschnitt von P in P_0 .

Mit diesen beiden Eigenschaften gilt dann

$$\lambda_2 = \kappa \cdot \underbrace{\cos(\nu)}_{\pm 1} .$$

Also stimmt die Hauptkrümmung λ_2 bis auf Vorzeichen mit der Krümmung κ an der betrachteten Stelle überein.

Wir verifizieren dieses Ergebnis an der Stelle $\binom{0}{0}$ mit einer direkten Rechnung.

Die Kurve $K_{(2)}$ wird parametrisiert durch

$$C_{(2)}(v) = \begin{pmatrix} 0 \\ v \\ -v^2 \end{pmatrix} .$$

Wir haben

$$C'_{(2)}(v) = \begin{pmatrix} 0\\1\\-2v \end{pmatrix}$$
 und $C''_{(2)}(v) = \begin{pmatrix} 0\\0\\-2 \end{pmatrix}$.

Ferner haben wir

$$|C'_{(2)}(v)| = \sqrt{1+4v^2}, \ C'_{(2)}(v) \times C''_{(2)}(v) = \begin{pmatrix} -2\\0\\0 \end{pmatrix} \text{ und } |C'_{(2)}(u) \times C''_{(2)}(u)| = 2.$$

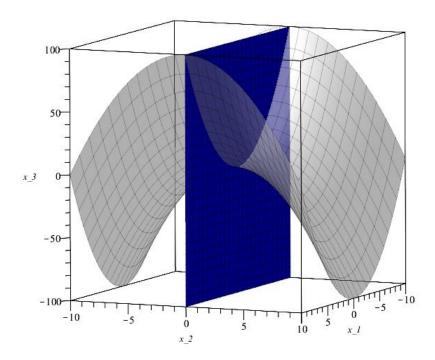
Also ist die Krümmung an der Stelle $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ gegeben durch

$$\kappa = \frac{1}{|C'_{(2)}(0)|^3} |C'_{(2)}(0) \times C''_{(2)}(0)| = \frac{1}{(\sqrt{1+4\cdot 0^2})^3} \cdot 2 = 2.$$

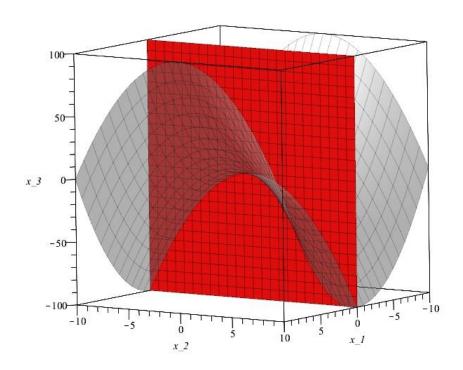
Die Hauptkrümmung zum Hauptkrümmungsvektor $\binom{0}{1}$ ist gegeben durch

$$\lambda_2 = -2$$
.

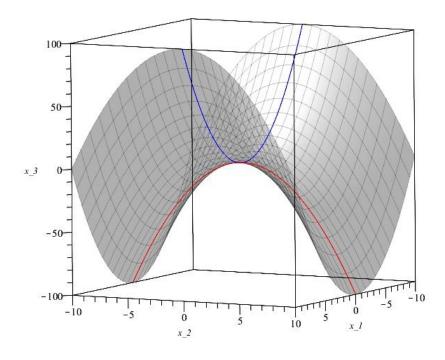
Dies zeigt, dass κ und λ_2 bis auf Vorzeichen übereinstimmen.



Eine Grafik des hyperbolischen Paraboloids Pmit der $x_2\hbox{-} x_3\hbox{-}{\rm Ebene}\ E_{(2)}$ (rot)



Eine Grafik des hyperbolischen Paraboloids P mit den Kurven $K_{(1)}$ (blau) und $K_{(2)}$ (rot).



(b) An der Stelle $\binom{u}{v} = \binom{2}{1}$ haben wir

$$\begin{pmatrix} E F \\ F G \end{pmatrix}^{-1} = \frac{1}{21} \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix}$$
 und $\begin{pmatrix} L & M \\ M & N \end{pmatrix} = \frac{2}{\sqrt{21}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Also ist die Weingarten-Matrix gegeben durch

$$W = \begin{pmatrix} E F \\ F G \end{pmatrix}^{-1} \begin{pmatrix} L M \\ M N \end{pmatrix} = \frac{1}{21} \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix} \cdot \frac{2}{\sqrt{21}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{2}{21\sqrt{21}} \begin{pmatrix} 5 & -8 \\ 8 & -17 \end{pmatrix} = \begin{pmatrix} 5\alpha & -8\alpha \\ 8\alpha & -17\alpha \end{pmatrix}$$

mit $\alpha := \frac{2}{21\sqrt{21}}$.

Wir berechnen die Hauptkrümmungen an der Stelle $\binom{2}{1}$.

Man kann anstelle der Eigenwerte von $\binom{5\alpha}{8\alpha} - \frac{8\alpha}{17\alpha}$ auch die Eigenwerte von $\binom{5}{8} - \frac{8}{17\alpha}$ berechnen und dann mit α multiplizieren. Die Eigenvektoren sind bei beiden Matrizen dieselben. Von diesem Trick werden wir im folgenden aber keinen Gebrauch machen.

Wir haben

$$\begin{split} \det\!\left(W - \lambda E_2\right) &= \det\!\left(\begin{smallmatrix} 5\alpha - \lambda & -8\alpha \\ 8\alpha & -17\alpha - \lambda \end{smallmatrix}\right) = -(5\alpha - \lambda)(17\alpha + \lambda) + 64\alpha^2 \\ &= -\left(85\alpha^2 + 5\alpha\lambda - 17\alpha\lambda - \lambda^2\right) + 64\alpha^2 = \lambda^2 + 12\alpha\lambda - 21\alpha^2 \,. \end{split}$$

Dieses Polynom hat die Nullstellen

$$\lambda_1 = (-6+\sqrt{57})\alpha = \frac{2(\sqrt{57}-6)}{21\sqrt{21}}$$

 $\lambda_2 = (-6-\sqrt{57})\alpha = -\frac{2(\sqrt{57}+6)}{21\sqrt{21}}$

Also hat die Matrix W die Eigenwerte λ_1 und λ_2 , und die Hauptkrümmungen an der Stelle $\binom{2}{1}$ sind λ_1 und λ_2 .

Wir berechnen zugehörige Hauptkrümmungsvektoren für die Hauptkrümmungen λ_1 und λ_2 . Wir berechnen einen Eigenvektor v_1 zum Eigenwert $\lambda_1=(-6+\sqrt{57})\alpha$. Das lineare Gleichungssystem

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5\alpha - (-6 + \sqrt{57})\alpha & -8\alpha \\ 8\alpha & -17\alpha - (-6 + \sqrt{57})\alpha \end{pmatrix} v_1 = \begin{pmatrix} (11 - \sqrt{57})\alpha & -8\alpha \\ 8\alpha & (-11 - \sqrt{57})\alpha \end{pmatrix} v_1$$

hat eine Koeffizientenmatrix von Rang 1, weswegen man nur die erste Zeile berücksichtigen muß, um auf den Lösungsvektor $v_1 = \binom{8}{11-\sqrt{57}}$ zu kommen. Es ist v_1 also ein Hauptkrümmungsvektor zur Hauptkrümmung λ_1 .

Wir berechnen einen Eigenvektor v_2 zum Eigenwert $\lambda_2=(-6-\sqrt{57})\alpha$. Das lineare Gleichungssystem

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5\alpha - (-6 - \sqrt{57})\alpha & -8\alpha \\ 8\alpha & -17\alpha - (-6 - \sqrt{57})\alpha \end{pmatrix} v_2 = \begin{pmatrix} (11 + \sqrt{57})\alpha & -8\alpha \\ 8\alpha & (-11 + \sqrt{57})\alpha \end{pmatrix} v_2$$

hat eine Koeffizientenmatrix von Rang 1, weswegen man nur die erste Zeile berücksichtigen muß, um auf den Lösungsvektor $v_2 = \binom{8}{11+\sqrt{57}}$ zu kommen. Es ist v_2 also ein Hauptkrümmungsvektor zur Hauptkrümmung λ_2 .