Differentialgeometrie für Geodäten

Blatt 6

Platzaufgaben

Platzaufgabe 11

Man berechne die Gaußsche Krümmung der x_1 - x_2 -Ebene.

- (a) Man verwende hierzu kartesische Koordinaten.
- (b) Man verwende hierzu Polarkoordinaten.

Platzaufgabe 12

Es parametrisiert $\Phi(u,v):=\binom{u}{v}$ ein Rotationsparaboloid P, wobei $u,\,v\,\in\,\mathbb{R}.$ Vgl. Platzaufgabe 8.

- (a) Man bestimme die Gaußsche Krümmung $\mathrm{K}_{\mathrm{Gauß}}$ an jedem Punkt von P.
- (b) An welcher Stelle wird $K_{Gauß}$ maximal?

Differentialgeometrie für Geodäten

Blatt 6

Hausaufgaben

Abgabe bis Mo 23.01.23 in den Gruppenübungen.

Hausaufgabe 11
$$\text{Es parametrisiert } \Phi(\varphi,\psi) = \begin{pmatrix} \cos(\varphi) \\ \cos(\psi)(2+\sin(\varphi)) \\ \sin(\psi)(2+\sin(\varphi)) \end{pmatrix} \text{ mit } \varphi,\,\psi \in [0,2\pi] \text{ einen Torus } T.$$
 Vgl. Hausaufgaben 5, 9.

- (a) Man bestimme die Gaußsche Krümmung $K_{Gauß}$ an jedem Punkt von T.
- (b) An welchen Stellen wird $K_{Gauß}$ maximal? An welchen Stellen wird $K_{Gauß}$ minimal?

Hausaufgabe 12

Hausaufgabe 12 Es parametrisiert
$$\Phi(\varphi, \vartheta) := \begin{pmatrix} \sin(\vartheta)\cos(\varphi) \\ \sin(\vartheta)\sin(\varphi) \\ 2\cos(\vartheta) \end{pmatrix}$$
 ein Ellipsoid S , wobei $\vartheta \in [0, \pi]$ und $\varphi \in [0, 2\pi]$. Vgl. Hausaufgabe 8.

- (a) Man bestimme die Gaußsche Krümmung $K_{Gauß}$ an jedem Punkt von S.
- (b) An welchen Stellen wird $K_{Gauß}$ maximal? An welchen Stellen wird $K_{Gauß}$ minimal?