Höhere Mathematik 3 für Ingenieurstudiengänge

Blatt 2

Vortragsübung am Mi 9.11.22, Fr 11.11.22

Aufgabe 1 (Der Satz von Gauß in 2D)

Wir betrachten das Rechteck J mit Eckpunkten $\binom{0}{0}$, $\binom{3}{0}$, $\binom{3}{2}$, $\binom{9}{2}$. Sei K die geschlossene Kurve, die J berandet.

Berechnen Sie den Ausfluss des Vektorfeldes $g: \mathbb{R}^2 \to \mathbb{R}^2: \binom{x}{y} \mapsto g(x,y) := \binom{x-\mathrm{e}^{x-y}}{y+\mathrm{e}^{x-y}}$ durch K.

Aufgabe 2 (Flächen in 3D; Parametrisierungen und Flächeninhalt)

Seien $a,h\in\mathbb{R}_{>0}.$ Skizzieren Sie die im \mathbb{R}^3 durch die Parametrisierung

$$\Phi(u,v) = (a\cos(u),a\sin(u),v) \quad \text{für} \quad 0 \leqslant u \leqslant 2\pi, \ 0 \leqslant v \leqslant h$$

gegebene Fläche und berechnen Sie ihren Flächeninhalt.

Aufgabe 3 (Der Satz von Stokes)

Wir betrachten die folgenden Flächen:

- S_1 : Mantelfläche der Halbkugel $x^2 + y^2 + z^2 = 1, z \ge 0.$
- S_2 : Mantelfläche des Rotationsparaboloids $z=1-x^2-y^2,\,z\geqslant 0.$
- S_3 : Kreisfläche $x^2 + y^2 \leqslant 1$, z = 0.

Sei g das Vektorfeld $g: \mathbb{R}^3 \to \mathbb{R}^3: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto g(x,y,z) := \begin{pmatrix} x^2 + y^2 \\ y \\ z^2 \end{pmatrix}.$

Bestimmen Sie für $i \in \{1, 2, 3\}$ die Zirkulation $Z(g, \partial S_i) = \iint_{S_i} rot(g) \cdot n \, dO$.

Aufgabe 4 (Integration in 3D)

Skizzieren Sie die beiden Zylinder

$$Z_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, -2 \le z \le 2\}$$

$$Z_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + z^2 \le 1, -2 \le y \le 2\}$$

und berechnen Sie das Volumen der Schnittmenge $B = Z_1 \cap Z_2$, d.h. $\iiint_B 1 \, dx \, dy \, dz$.