Höhere Mathematik 3 für Ingenieurstudiengänge

Blatt 11

Platzaufgaben

Platzaufgabe 31 Sei $f : \mathbb{R} \to \mathbb{R}$ die 2π -periodische Funktion, die für $-\pi < x \leqslant \pi$ gegeben ist durch

$$f(x) = x$$
.

Wir schreiben

$$f_N(x) := \sum_{k=1}^N \frac{2(-1)^{k+1}}{k} \sin(kx) .$$

Wir schreiben ferner

$$f_{\infty}(x) := \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{k} \sin(kx)$$
.

- (a) Überprüfen Sie: Es ist Fourier_f(x) = $f_{\infty}(x)$.
- (b) Geben Sie das Fourier-Polynom $f_N(x)$ an für $N \in \{1, 2, 3\}$.
- (c) Bestimmen Sie das Skalarprodukt $\langle f_2|f_2\rangle$ unter Verwendung von 7.2.4. Bestimmen Sie $||f_2||$.

Platzaufgabe 32 Sei $f : \mathbb{R} \to \mathbb{R}$ die 2π -periodische Funktion, die für $-\pi < x \leqslant \pi$ gegeben ist durch

$$f(x) = x .$$

- (a) Berechnen Sie die komplexe Fourier-Reihe Fourier $_f^{\mathbb{C}}(x)$.
- (b) Bestätigen Sie durch Vergleich mit Platzaufgabe 31, dass die Koeffizienten c_k von Fourier $_f^{\mathbb{C}}(x)$ mit den Koeffizienten a_k , b_k von Fourier $_f(x)$ in folgender Beziehung stehen.

$$c_0 = \frac{a_0}{2}, \quad c_k = \frac{a_k - ib_k}{2}, \quad c_{-k} = \frac{a_k + ib_k}{2} \quad \text{für } k \geqslant 1.$$

Platzaufgabe 33

Sei $f: \mathbb{R} \to \mathbb{R}$ die 2-periodische gerade Funktion, für welche f(x) = 1 - x ist für $0 \le x \le 1$. Skizzieren Sie den Graphen von f(x) für $-3 \le x \le 3$.

Bestimmen Sie die Fourier-Reihe von f(x) unter Verwendung von 7.7.1.

Höhere Mathematik 3 für Ingenieurstudiengänge

Blatt 11

Hausaufgaben

Abgabe bis Mi 24.01.24 / Do 25.01.24 in den Gruppenübungen oder bis Di 23.01.24 im Ilias.

Hausaufgabe 31 Sei $f: \mathbb{R} \to \mathbb{R}$ die 2π -periodische Funktion, die für $-\pi < x \leqslant \pi$ gegeben ist durch

$$f(x) = \frac{x^2}{\pi} - |x|.$$

Die Fourier-Reihe von f sei bereits bekannt:

Fourier_f(x) =
$$-\frac{\pi}{6} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^k + 1}{k^2} \cos(kx)$$
.

- (a) Bestimmen Sie Fourierf'(x) für die Ableitung f'.
- (b) Bestimmen Sie Fourier_{f'}(0) durch Einsetzen von x = 0 in Fourier_{f'}(x). Bestimmen Sie Fourier_{f'}(0) unter Verwendung von $\lim_{x\to 0-0} f'(x)$ und $\lim_{x\to 0+0} f'(x)$. Vergleichen Sie die Resultate.
- (c) Sei $f'_N(x)$ das N-te Fourier-Polynom von f'(x) für $N \ge 1$. Bestimmen Sie $||f' - f'_1||^2$ und $||f' - f'_2||^2$.

Hausaufgabe 32

- (a) Verwenden Sie die Parsevalsche Gleichung und die Fourier-Reihe aus Platzaufgabe 30, um $\sum_{k=1}^{\infty} \frac{1}{k^4}$ zu berechnen.
- (b) Verwenden Sie die Parsevalsche Gleichung und die Fourier-Reihe aus Hausaufgabe 28, um $\sum_{k=1}^{\infty} \frac{1}{(4k^2-1)^2}$ zu berechnen.

Hausaufgabe 33 Sei $g: \mathbb{R} \to \mathbb{R}$ die 2π -periodische Funktion, die für $-\pi < x \leqslant \pi$ gegeben ist durch

$$g(x) = \begin{cases} \frac{2x}{\pi} + 1 & \text{für } -\pi < x \le 0\\ \frac{2x}{\pi} - 1 & \text{für } 0 < x \le \pi. \end{cases}$$

- (a) Berechnen Sie die komplexe Fourier-Reihe Fourier $_g^{\mathbb{C}}(x)$.
- (b) Bestätigen Sie durch Vergleich mit Hausaufgabe 31, dass g(x) = f'(x) ist an allen Stellen, an denen f differenzierbar ist. Bestätigen Sie ferner, dass die Koeffizienten c_k von Fourier $_g^{\mathbb{C}}(x)$ mit den dortigen Koeffizienten a_k , b_k von Fourier $_{f'}(x)$ in folgender Beziehung stehen.

$$a_0 = 2c_0, \quad a_k = c_k + c_{-k}, \quad b_k = \mathrm{i}(c_k - c_{-k}) \quad \text{für } k \geqslant 1.$$

https://info.mathematik.uni-stuttgart.de/HM3-Ing/