Höhere Mathematik 3 für Ingenieurstudiengänge

Blatt 12

Platzaufgaben

Platzaufgabe 34 Sei $f:(0,2) \to \mathbb{R}: x \to f(x) := 3$.

- (a) Sei F(x) die ungerade 4-periodische Fortsetzung von f(x). Skizzieren Sie den Graphen von F(x) für $-2 \le x \le 6$. Markieren Sie darin den Graphen von f(x). Geben Sie die Funktionswerte F(0) und F(2) an.
- (b) Bestimmen Sie die Fourier-Reihe von F(x).

Platzaufgabe 35 Wir betrachten die partielle Differentialgleichung

$$u_x + u_y = 3.$$

- (a) Überprüfen Sie, ob $u(x,y) := \cos(x-y) + 3x$ eine Lösung der Differentialgleichung ist.
- (b) Überprüfen Sie, ob

$$u(x,y) := f(x-y) + 3x$$

für jede differenzierbare Funktion $f:\mathbb{R}\to\mathbb{R}$ eine Lösung der Differentialgleichung ist.

(c) Finden Sie eine Lösung u(x,y) der Differentialgleichung, die u(0,y)=5y für $y\in\mathbb{R}$ erfüllt.

Platzaufgabe 36 Wir betrachten die partielle Differentialgleichung

$$u_x \cdot u_y = u$$
.

- (a) Finden Sie Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ so, dass $u(x, y) := f(x) \cdot g(y)$ die Differentialgleichung löst.
- (b) Finden Sie mittels (a) eine Funktion u(x,y), die die Differentialgleichung löst und die u(0,0) = 1 erfüllt.
- (c) Finden Sie Lösungen der Form

$$u(x,y) := (\alpha x + \beta y)^2,$$

wobei $\alpha, \beta \in \mathbb{R}$. Gibt es unter diesen eine Lösung, die nicht bereits in (a) gefunden wurde?

Höhere Mathematik 3 für Ingenieurstudiengänge

Blatt 12

Hausaufgaben

Abgabe bis Mi 29.1.25 / Do 30.1.25 in den Gruppenübungen oder bis Di 28.1.25 im Ilias.

Hausaufgabe 34 Sei $f:(0,4)\to\mathbb{R}:x\mapsto f(x):=6-x$. Sei F(x) die ungerade 8-periodische Fortsetzung von f(x).

- (a) Skizzieren Sie den Graphen von F(x) für $-4 \le x \le 12$. Markieren Sie darin den Graphen von f(x). Geben Sie die Funktionswerte F(0) und F(4) an.
- (b) Bestimmen Sie Fourier $_F(x)$.
- (c) Bestimmen Sie Fourier $_F^{\mathbb{C}}(x)$.

Hausaufgabe 35 Wir betrachten die Differentialgleichung

$$yu_x + xu_y = 0.$$

(a) Überprüfen Sie, ob

$$u(x,y) := f(x^2 - y^2)$$

für jede differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ eine Lösung der Differentialgleichung ist.

- (b) Finden Sie eine Lösung u(x,y) der Differentialgleichung, die $u(1,y)=\sin(y^2)$ für $y\in\mathbb{R}$ erfüllt.
- (c) Sei $C: \mathbb{R} \to \mathbb{R}^2: t \mapsto C(t) := \binom{\cosh(t)}{\sinh(t)}$. Überprüfen Sie: Es ist $C(t) \in \{\binom{x}{y} \in \mathbb{R}^2 \mid x^2 - y^2 = 1\}$ für $t \in \mathbb{R}$. Skizzieren Sie die Kurve $K := C(\mathbb{R})$.
- (d) Sei u eine beliebige Lösung der Differentialgleichung, nicht notwendigerweise aus (a). Berechnen Sie für C aus (c) die Ableitung $\frac{d}{dt}u(C(t))$. Argumentieren Sie, weshalb u(C(t)) stets eine konstante Funktion ist.

Hausaufgabe 36 Wir betrachten die Differentialgleichung

$$u_{xx}=u_{yy}.$$

- (a) Finden Sie Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ so, dass $u(x, y) := f(x) \cdot g(y)$ die Differentialgleichung löst und $u_{xx}(x, y)$ nichtkonstant ist.
- (b) Finden Sie eine Lösung u(x,y) der Differentialgleichung, die $u(x,0) = \cos(3x)$ für $x \in \mathbb{R}$ erfüllt.
- (c) Finden Sie eine Lösung u(x,y) der Differentialgleichung, die $u(0,y)=\exp(3y)$ für $y\in\mathbb{R}$ erfüllt.

Hier finden Sie die Umfrage zur Veranstaltung:

https://evasysw.uni-stuttgart.de/evasys/online.php?p=D9SSD

