Höhere Analysis Vorlesung im Sommersemester 2018

Übungsblatt 4

Aufgabe 4.1 (schriftlich, 4 Punkte)

a) Geben Sie das größtmögliche r an, sodass durch die Reihe

$$\sum_{n=0}^{\infty} n^2 \left(\frac{n+1}{2n+3} \right)^n z^n$$

eine Funktion f definiert wird, die im Innern der Kreisscheibe um z = 0 mit Radius r holomorph ist. Geben Sie die Ableitung von f an. Gilt $f^{(n)}(0) \in \mathbb{R}$ für alle $n \in \mathbb{N}$?

b) Zeigen Sie: Sei f eine ganze Funktion, und es existiere ein Polynom vom Grad n mit $|f(z)| \leq |p(z)|$ für alle $z \in \mathbb{C}$. Dann ist f ein Polynom, dessen Grad kleiner oder gleich n ist.

Aufgabe 4.2 Sei $z_0 = 4 + 2i$ und $f: B_1(z_0) \to \mathbb{C}$ durch die Potenzreihe

$$\sum_{n=0}^{\infty} (-4)^{-(n+1)} (z-z_0)^n$$

gegeben.

- a) Bestimmen Sie den Konvergenzradius der Reihe und setzen Sie f auf ein größeres Gebiet holomorph fort.
- b) Bestimmen Sie die Koeffizienten $f^{(n)}(z_1)/n!$ bei Potenzreihenentwicklung von f um $z_1 = 4$ durch Auswertung der Ableitung der Reihe und setzen Sie f auf ein größeres Gebiet holomorph fort.

- **Aufgabe 4.3** a) Sei $f: \mathbb{C} \to \mathbb{C}$ ganz und nicht konstant. Beweisen Sie, dass dann $f(\mathbb{C})$ dichte Teilmenge von \mathbb{C} ist, d.h. dass es zu jedem $w \in \mathbb{C}$ und jedem $\varepsilon > 0$ ein $z \in \mathbb{C}$ gibt, sodass $|f(z) w| < \varepsilon$.
 - **b)** Bestimmen Sie $\exp(\mathbb{C})$, $\cos(\mathbb{C})$ und $\sin(\mathbb{C})$.

Bemerkung: Tatsächlich ist das Bild einer ganzen, nicht-konstanten Funktion die gesamte komplexe Zahlenebene, aus der höchstens ein Punkt herausgenommen wurde. Dieser Sachverhalt ist als kleiner Satz von Picard bekannt.

Aufgabe 4.4 Wenden Sie den Cauchyschen Integralsatz auf das Rechteck mit den Ecken $\pm a$, $\pm a + ib$ (a, b > 0) und die Funktion $f : \mathbb{C} \to \mathbb{C}$, $z \mapsto \exp(-z^2)$ an, um zu zeigen, dass

$$\int_{-\infty}^{+\infty} e^{-x^2} \cos(2bx) dx = \sqrt{\pi} e^{-b^2}.$$

Hinweis: Zeigen Sie, dass bei festem b die Integrale über die vertikalen Seiten des Rechtecks im Limes $a \to \infty$ gegen null konvergieren. Außerdem dürfen Sie verwenden, dass $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.

Aufgabe 4.5 In dieser Aufgabe soll der Fundamentalsatz der Algebra direkt aus dem Cauchyschen Integralsatz hergeleitet werden. Sei dazu p ein nicht-konstantes komplexes Polynom,

$$p(z) = a_0 + a_1 z + \dots + a_n z^n \quad (a_{\nu} \in \mathbb{C}),$$

mit $n \geq 1$ und $a_n \neq 0$. Man nehme an, dass p keine Nullstelle in \mathbb{C} besitze. Zeigen Sie, dass unter dieser Annahme

$$\int_{|z|=r} \frac{a_0}{zp(z)} dz = 2\pi i \tag{1}$$

mit r > 0 beliebig. Leiten Sie daraus einen Widerspruch her.

Hinweis: Für den Nachweis von (1) betrachte man die Funktion $h: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ mit

$$h(z) = \frac{a_0}{zp(z)} - \frac{1}{z}.$$

Besprechung der Votieraufgaben in den Übungen am

Freitag, den 11.5.2018.

Die schriftlichen Aufgaben werden in der darauffolgenden Übung besprochen.