Höhere Analysis Vorlesung im Sommersemester 2018

Vortragsübungsblatt 9

Aufgabe 9.1 Sei (X, Σ, μ) ein σ -endlicher Maßraum, p > 0 und $f: X \to [0, \infty]$ messbar. Zeigen Sie, dass

$$\int_X f^p d\mu = \int_0^\infty p t^{p-1} \cdot \mu(\lbrace x \in X \mid f(x) > t \rbrace) dt.$$

Aufgabe 9.2 Es seien (X, Σ, μ) ein Maßraum, (X', Σ') ein messbarer Raum und $T: X \to X'$ messbar. Das $Bildma\beta$ von μ unter T ist durch

$$\mu'(E) = \mu(T^{-1}(E)), \quad E \in \Sigma',$$

definiert und (X', Σ', μ') ist ein Maßraum.

a) Sei $f: X' \to \overline{\mathbb{R}}$ messbar. Zeigen Sie, dass f genau dann μ' -integrierbar ist, wenn $f \circ T$ μ -integrierbar ist. Zeigen Sie außerdem, dass

$$\int_{E} f \, \mathrm{d}\mu' = \int_{T^{-1}(E)} f \circ T \, \mathrm{d}\mu, \quad E \in \Sigma',$$

falls $f \geq 0$ oder f integrierbar ist.

b) Seien $V, U \subset \mathbb{R}^n$ offen und $\Phi \colon V \to U$ ein Diffeomorphismus. Vergewissern Sie sich, dass der Transformationssatz äquivalent zu der Aussage $(\lambda^n)'_{|\det \Phi'|} = \lambda^n$ ist. Hierbei bezeichnet $(\lambda^n)_{|\det \Phi'|}$ das zu λ^n gehörende Maß mit Dichte $|\det \Phi'|$ und $(\lambda^n)'_{|\det \Phi'|}$ das Bildmaß von $(\lambda^n)_{|\det \Phi'|}$ unter Φ .

Aufgabe 9.3 Beweisen Sie die Teschebychevsche Ungleichung:

Seien
$$f \in L^p(X, \Sigma, \mu), \varepsilon > 0$$
 und $A = \{x \in X \mid |f(x)| \ge \varepsilon\},$ dann

$$\mu(A) \le \frac{\|f\|_{L^p}^p}{\varepsilon^p}.$$

Apl. Prof. Dr. Wolf-Patrick Düll Insitut für Analysis, Dynamik und Modellierung

Aufgabe 9.4 a) Beweisen Sie den Satz von Egorov:

Sei (X, Σ, μ) ein Maßraum mit $\mu(X) < \infty$ und sei (f_n) eine Folge messbarer Funktionen, die fast überall gegen Null konvergiert. Zu jedem $\varepsilon > 0$ existiert dann ein $E \in \Sigma$, so dass $\mu(X \setminus E) \le \varepsilon$ und die Folge (f_n) auf E gleichmäßig konvergiert.

b) Sei (X, Σ, μ) ein Maßraum mit $\mu(X) < \infty$ und sei (f_n) eine Folge messbarer Funktionen. Die Folge (f_n) konvergiert nach Maß gegen eine Funktion f, falls

$$\mu(\lbrace x \in X \mid |f(x) - f_n(x)| \ge \varepsilon \rbrace) \to 0, \quad n \to \infty,$$

für jedes $\varepsilon > 0$.

Zeigen Sie, dass für $f_n \to f$ punktweise fast überall, die Folge (f_n) auch nach Maß gegen f konvergiert.

Aufgabe 9.5 Sei (X, Σ, μ) ein σ -endlicher Maßraum, $f_k \colon X \to \overline{\mathbb{R}}$ ein Folge integrierbarer Funktionen, so dass $f_k \to f$ punktweise fast überall.

- a) Die Folge (f_k) habe weiterhin die Eigenschaften
 - (i) (gleichgradige Integrierbarkeit) Für alle $\varepsilon > 0$ gibt es ein $\delta > 0$, so dass

$$E \in \Sigma, \ \mu(E) \le \delta \quad \Rightarrow \quad \sup_{k \in \mathbb{N}} \int_{E} |f_k| \, \mathrm{d}\mu \le \varepsilon.$$

(ii) (Straffheit) Es gibt eine ein Folge $E_n \in \Sigma$ mit $\mu(E_n) < \infty$, $E_n \uparrow X$ und

$$\lim_{n\to\infty} \sup_{k\in\mathbb{N}} \int_{X\backslash E_n} |f_k| \,\mathrm{d}\mu = 0 \,.$$

Zeigen Sie, dass damit f integrierbar ist und

$$\lim_{k \to \infty} \int_{Y} |f_k - f| \, \mathrm{d}\mu = 0. \tag{1}$$

b) Beweisen Sie die Umkehrung. D.h. aus (1) folgen (i) und (ii).

Alle Aufgaben auf diesem Blatt werden am

Dienstag, den 3.7.2018

in der Vortragsübung besprochen.