Das meiste in Kapitel 2.1+2.2 war Erinnerung an Bekanntes aus (AI). Jetzt wollen wir uns den neuen Konzepten widmen, die durch Kap. 2.1+2.2 motiviert sind. Zunächst eine Motivation für die nächste Definition:

2.18 Bem: Angenommen $A \in M_n(K)$ ist diagonalisierbar. Dann ex. $\lambda_1, \ldots, \lambda_n \in K$ und $P \in GL_n(K)$ mit

$$P^{-1}AP = D = \text{diag}(\lambda_1, \ldots, \lambda_n)$$

Sei $(p_{ij}) = P = (v_1 | \ldots | v_n)$ Matrix mit Spaltenvektoren v_1, \ldots, v_n. Dann ist

$$PD = \left(\begin{array}{cccc}
 P_{11} & P_{12} & \cdots & P_{1n} \\
 P_{21} & P_{22} & \cdots & P_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 P_{n1} & P_{n2} & \cdots & P_{nn}
\end{array} \right) \left(\begin{array}{cccc}
 \lambda_1 & & & 0 \\
 & \lambda_2 & & \\
 & & \ddots & \\
 0 & & & \lambda_n
\end{array} \right) = \left(\begin{array}{cccc}
 \lambda_1 v_1 & & & 0 \\
 \lambda_2 v_2 & & & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & & \lambda_n v_n
\end{array} \right)$$

Nach Voraussetzung ist $AP = PD$.

$\Rightarrow A(v_1 | \ldots | v_n) = AP = PD = (\lambda_1 v_1 | \ldots | \lambda_n v_n)$.

$\Rightarrow Av_i = \lambda_i v_i$ für $1 \leq i \leq n$.

Dies motiviert die folgende Definition:

2.19 Def: Sei $A \in M_n(K)$. Dann heißt ein Element $\lambda \in K$ **Eigenwert (EW)** von A, falls es $0 \neq x \in K^n$ gibt mit

$$Ax = \lambda x$$. In diesem Fall heißt x ein **Eigenvektor (EV)** von A zum **Eigenwert λ**, und die Menge

$$\text{Eig}(A,\lambda) := \{ x \in K^n \mid Ax = \lambda x \}$$

heißt der **Eigensatz von A zum EW λ**.
(b) Sei $T: V \to V$ linear. Dann heißt $\lambda \in K$ ein Eigenvwert von T, falls es einen Vektor $0 \neq v \in V$ gibt mit $Tv = \lambda v$. In diesem Fall heißt der Vektor v Eigenvektor von T zum Eigenwert λ. Die Menge

$$\text{Eig}(T, \lambda) := \{ v \in V \mid Tv = \lambda v \}$$

heißt Eigenraum von T zum Eigenwert λ.

2.20 Bem.:
(a) Es ist $\text{Eig}(A, \lambda) = \{ x \in K^n \mid Ax = \lambda x \} = \text{Eig}(T_A, \lambda)$ mit $T_A: K^n \to K^n$, $x \mapsto Ax$. Beachte $M_0(T_A) = A$, E Standardbasis.

(b) Es ist $0 \neq v \in V$ ein Eigenvektor von T zum Eigenwert λ.

$\Rightarrow M_B(v)$ ist Eigenvektor von $M_B(A)$ zum Eigenwert λ.
Hierbei ist B eine Basis von V.

Beweis:

(c) Die von Null verschiedenen Elemente im Eigenraum entsprechen genau den Eigenvektoren zum Eigenwert λ.

(Angenommen der Nullvektor wäre ein Eigenvektor)

Dann gilt $A \cdot 0 = \lambda \cdot 0$ f"ur $\lambda \in K$ (also $T(0) = \lambda \cdot 0$).

Es w"urde folgen, daf"ur jede $\lambda \in K$ ein Eigenwert von A bzw. T ist. Dies l"atte wenig Aussagekraft f"ur eine gute Theorie. Per Definition gilt also:

Der Nullvektor ist kein Eigenvektor.)
2.21 Lemma:

Sei \(\lambda \in \mathbb{K} \), \(T : V \to V \) linear. Dann ist auch \(T - \lambda \cdot \text{id}_V \in \text{End}_k(V) \), also Endomorphismus von \(V \), und es gilt: \(\text{Eig}(T, \lambda) \) ist Unterraum von \(V \), und

\[\lambda \text{ ist EW von } T \]

\[\Rightarrow 0 + \text{Eig}(T, \lambda) = \ker(T - \lambda \cdot \text{id}) \]

\[\Rightarrow \det(T - \lambda \cdot \text{id}) = 0. \]

Insbesondere ist Null ein EW von \(T \)

\[\Rightarrow \ker T = 0 \]

\[\Rightarrow T \text{ nicht injektiv.} \]

Beweis:

(a) Es ist \(T \) linear, \(\text{id} \) linear.

Der \(\text{End}_k(V) \) ein \(\mathbb{K} \)-VR ist, also abgeschlossen bzgl. Skalarmultiplikation, additive Inversen und Addition ist, folgt \(T - \lambda \cdot \text{id} \in \text{End}_k(V) \).

(b) Es ist \(\text{Eig}(T, \lambda) = \{v \in V \mid Tv = \lambda v\} \)

\[= \{v \in V \mid (T - \lambda \cdot \text{id})v = 0\} \]

\[= \ker(T - \lambda \cdot \text{id}) \]

Damit ist \(\text{Eig}(T, \lambda) \) ein Unterraum von \(V \).

(c) \(\lambda \) EW von \(T \), so ist nach Def 2.19

\(\text{Eig}(T, \lambda) \neq 0 \), also nach (b) ist \(T - \lambda \cdot \text{id} \) nicht bijektiv, dh. \(\det(T - \lambda \cdot \text{id}) = 0 \).

Nach LT 1 ist ein Endomorphismus injektiv \(\Leftrightarrow \text{null}\text{-}\text{ injektiv} \) bzw. \(\text{bijektiv} \). Damit folgt die Rückwirkung.
2.22 Bsp: Sei $k = \mathbb{R}$.

(a) Sei $A = \begin{pmatrix} 4 & -1 \\ -5 & -2 \end{pmatrix}$. Dann gilt:

(i) $0 \neq \operatorname{Eig}(A, \lambda) \iff \det(\lambda I - A) = 0$

\[
\iff 0 = \det \begin{pmatrix} \lambda - 4 & 1 \\ -5 & \lambda + 2 \end{pmatrix} = (\lambda - 4)(\lambda + 2) + 5
\]

\[
= \lambda^2 - 4\lambda + 2\lambda - 8 + 5
\]

\[
= \lambda^2 - 2\lambda - 3
\]

\[
= (\lambda + 1)(\lambda - 3).
\]

\[
\iff \lambda = -1 \text{ oder } \lambda = 3.
\]

(ii) Wir berechnen den Eigenraum $\operatorname{Eig}(A, -1)$:

Es ist $\begin{pmatrix} 4 & -1 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (-1) \begin{pmatrix} x \\ y \end{pmatrix}$

\[
\iff \begin{cases} 4x - y = -x \\ -5x - 2y = -y \end{cases} \iff \begin{cases} 5x = y \\ 5x = y \end{cases}
\]

Also ist $\operatorname{Eig}(A, -1) = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \left| \begin{array}{c} y = 5x \\ 5x = y \end{array} \right. \right\} = \left\{ \begin{pmatrix} x \\ 5x \end{pmatrix} \mid x \in \mathbb{R} \right\}$

$= \text{Span}_\mathbb{R} \left\{ \begin{pmatrix} 1 \\ 5 \end{pmatrix} \right\}$, ein 1-dimensionaler Eigenraum.

Wir berechnen den Eigenraum $\operatorname{Eig}(A, 3)$:
(b) \[\tilde{A} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \]

Wir berechnen die Eigenwerte von \(\tilde{A} \):

\[\Rightarrow \text{gilt } k = \mathbb{Q} \text{ (wie oben angegeben), so hat } \tilde{A} \text{ keine}
\]

Eigenwerte.

\[\text{Ist } k = \mathbb{R}, \text{ dann} \]

\[\text{Ist } k = \mathbb{C}, \text{ dann} \]

Für \(k = _ \) berechnen wir die Eigenräume:

Übung: Bestimmen Sie Eigenwerte, Eigenvektoren für die folgenden Matrizen \(B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \), \(C = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 3 & 0 \\ -1 & 4 & -1 \end{pmatrix} \).
2.23 Def: Sei \(K \) ein Körper.
(a) Wir definieren das charakteristische Polynom \(X_A \) einer quadratischen Matrix \(A \in M_n(K) \) durch
\[
X_A = \det(XI_n - A) \in K[X]
\]
(b) Sei \(T : V \rightarrow V \) linear.
Das charakteristische Polynom \(X_T \) von \(T \) ist definiert durch \(X_T = \det(Xid_V - T) \in K[X] \).

2.24 Bem: Sei \(K \) Körper.
(a) In Linearen Algebra haben wir den Körper \(\mathbb{Q} \) aus dem Ring der ganzen Zahlen konstruiert, und dann \(\mathbb{Z} \) in \(\mathbb{Q} \) eingebettet. Der Körper \(\mathbb{Q} \) bestand hierbei aus Äquivalenzklassen \(\frac{a}{b} \) mit \(a, b \in \mathbb{Z}, b \neq 0 \).

Diese Konstruktion läßt sich auf den Polynomring \(K[X] \) anwenden. Hierdurch erhält man den Körper \(K(X) \) der rationalen Funktionen. Die Elemente in \(K(X) \), also die rationalen Funktionen sind Äquivalenzklassen \(\frac{p}{q} \) mit \(p, q \in K[X], q \neq 0 \). Die Äquivalenzrelation kommt (wie bei \(\mathbb{Q} \)) durch das Kürzen oder Erweitern von Brüchen zustande: Sei \(f = \frac{p}{q} \) und \(q = \frac{r}{s} \) in \(K(X) \). Dann ist \(f = g \) in \(K(X) \)
\[
(\Rightarrow) \quad ps = qr \quad \text{in} \ K[X].
\]
Hierbei ist $\mathbb{K}[X] \subseteq \mathbb{K}(X)$ Teilring mittels $f \mapsto \frac{f}{1}$.
Gleichungen in $\mathbb{K}[X]$ kann man daher im Körper $\mathbb{K}(X)$ prüfen.

Details zu dieser Konstruktion finden Sie im Vorlesungsbericht Henke, Algebra SS 2017, Bem 2.18 und Theorem 12.9, Bsp 12.10.

(b) Aus Linearer Algebra I wissen wir:
Sind $A, B \in M_n(\mathbb{K})$, so gilt det $(AB) = \det A \cdot \det B$.
Wir betrachten nun Matrizen A, B mit Einträgen im Polynomring $\mathbb{K}[X]$. Sei $L = \mathbb{K}(X)$. Dann ist L nach (a) ein Körper, und es gilt $A, B \in M_n(L)$.
Damit ist nach Linearer Algebra I:
$\det (AB) = \det A \cdot \det B$.

Die Determinantenfunktion für Matrizen mit Einträgen im Polynomring $\mathbb{K}[X]$ ist also multiplikativ.
Bem: Sei \(A \in \mathbb{M}_n(K) \) bzw. \(T: V \rightarrow V \) linear.

(a) Nach 2.17 ist \(X_T \) wohldefiniert.

(b) Ähnliche Matrizen haben das gleiche charakteristische Polynom.

(c) Die Eigenwerte von \(A \) bzw. \(T \) sind genau die Nullstellen von \(X_A \) bzw. \(X_T \).

Aus der Definition der Determinante folgt, dass \(\deg X_A = n \) bzw. \(\deg X_T = \dim V \).

Also hat \(A \) nach 1.24 höchstens \(n \) verschiedene Eigenwerte bzw. \(T \) hat höchstens \(\dim(V) \) verschiedene Eigenwerte.

(d) Es ist \(X_A = X_{T_A} \) mit \(T_A : K^n \rightarrow K^n, x \mapsto Ax \).

(e) Sei \(A \in \mathbb{M}_n(K) \) und \(m < n \) mit \(A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix} \)

für \(B \in \mathbb{M}_m(K), \ C \in \mathbb{M}_{nx(n-m)}(K), \ D \in \mathbb{M}_{n-m}(K) \).

Dann ist \(X_A = X_B \cdot X_D \) dann
226 Prop: Das charakteristische Polynom hat die folgende Form:

(a) Sei $A \in M_n(K)$. Dann ist $\deg(X_A) = n$

und $X_A = X^n - \text{Sp}(A)X^{n-1} + \ldots + (-1)^n \det A$.

(b) Ist $T : V \rightarrow V$ Endomorphismus eines n-dimensionalen K-Vektorraums, dann ist $\deg(X_T) = n$

und $X_T = X^n - \text{Sp}(T) X^{n-1} + \ldots + (-1)^n \det (T)$.

Beweis: Aussage (b) folgt aus Aussage (a), ausgewandt auf die Darstellungsmatrix von T.

Um Aussage (a) zu beweisen, benutzen wir die Leibnitz Formel. Danach ist jeder Summand von $\det (XI - A)$ ein Produkt von n Faktoren, diese Faktoren haben entweder die Form $(X - a_{ii})$ oder die Form $-a_{ij}$, mit $i \neq j$. Es gilt:

(i) Unter diesen Summanden kommt X^n genau einmal vor.

(ii) Es gibt genau n Summanden mit Faktor X^{n-1}. Diese enthalten jeweils einen weiteren Faktor a_{ii} mit $1 \leq i \leq n$. Also ist der Koeffizient von X^{n-1} gerade $\text{Sp}(A)$.

(iii) Den konstanten Term von X_A erhalten wir durch die Berechnung von $X_A(0)$:

$$X_A(0) = \det (0I - A) = \det (-A) = (-1)^n \cdot \det A.$$
2.27 Korollar: Sei \(A \in M_n(K) \) mit \(X_A \) zerfällt in Linearfaktoren. Seien \(\lambda_1, \ldots, \lambda_n \in K \) die Eigenwerte von \(A \) (also mit Vielfachheiten der Nullstellen \(\lambda_i \) von \(X_A \) aufgezählt). Dann gilt:
\[
\det A = \prod_{i=1}^{n} \lambda_i, \quad \text{Sp}(A) = \sum_{i=1}^{n} \lambda_i.
\]

Analog für \(T: V \to V \) Endomorphismus.

Beweis:

Nach Voraussetzung ist \(X_A = \prod_{i=1}^{n} (X - \lambda_i) \) ausgelöst
\[
X^n - \left(\sum \lambda_i X^{n-1} \right) + \ldots + (-1)^n \prod \lambda_i.
\]

Mit Prop 2.26 und Koeffizientenvergleich folgt die Behauptung.

2.28 Thm: (geometrische und algebraische Vielfachheit)

Für jeden Eigenwert \(\lambda \in K \) von \(T: V \to V \) gilt:
\[
\dim \text{Eig} (T, \lambda) \leq \text{Vielfachheit der Nullstelle} \lambda \text{ von Polynom } X_T.
\]

Bem: Die Dimension \(\dim \text{Eig} (T, \lambda) \) heißt geometrische Vielfachheit von \(\lambda \); die Vielfachheit der Nullstelle von \(X_T \) heißt algebraische Vielfachheit.

Beweis: Wähle Basis von \(\text{Eig} (T, \lambda) \leq V \) und ergänze zu einer Basis \(\mathcal{B} \) von \(V \). Dann ist
\[
M_{\mathcal{B}} (T) = \begin{pmatrix} A & B \\ 0 & \lambda I_m \end{pmatrix} \quad \text{mit } m := \dim \text{Eig} (T, \lambda)
\]

Mit Bem 2.25 folgt \(X_T = X_A \cdot X_{\lambda I_m} = (X - \lambda)^m \cdot X_A \).
\[
\Rightarrow m = \dim \text{Eig} (T, \lambda) \leq \text{algebraische Vielfachheit von } \lambda \text{ im Polynom } X_T.
\]