Mathematik 1 für Informatiker

Blatt 2

Platzaufgaben

Platzaufgabe 5 Gegeben ist die Relation $R := \{(2,5), (3,3), (5,4)\}$ auf der Menge $M := \{1, 2, 3, 4, 5\}.$

- (a) Untersuchen Sie R auf Reflexivität, Symmetrie, Identitivität und Transitivität.
- (b) Bestimmen Sie die von R erzeugte Äquivalenzrelation und deren Äquivalenzklassen.

Platzaufgabe 6 Sei M die Menge der Abbildungen $\{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$. Die Relation R auf M sei gegeben durch $fRg :\Leftrightarrow f(n) \leqslant g(n)$ für $n \in \{1, 2, 3, 4\}$ und $f, g \in M$.

- (1) Untersuchen Sie R auf Reflexivität, Symmetrie, Identitivität und Transitivität. Geben Sie hierfür gegebenenfalls ein Gegenbeispiel an.
- (2) Ist R eine Äquivalenzrelation? Ist R eine Ordnungsrelation?

Platzaufgabe 7 Sei $n \in \mathbb{N}$ und $f(n) := 1^2 + 2^2 + \ldots + n^2$. Zeigen Sie, dass für $n \in \mathbb{N}$ die folgende Gleichung gilt.

$$f(n) = \frac{n(n+1)(2n+1)}{6}$$

Bemerkung: Später werden wir auch $1^2+2^2+\ldots+n^2=\sum_{k=1}^n k^2$ schreiben.

Platzaufgabe 8 Sei $n \in \mathbb{Z}_{\geqslant 1}$ gegeben.

Sei $a_0(n) := n$.

Wir setzen
$$a_1(n) := \begin{cases} a_0(n) + 3 & \text{falls } a_0(n) \not\equiv_2 0 \\ a_0(n)/2 & \text{falls } a_0(n) \equiv_2 0. \end{cases}$$
Wir setzen $a_2(n) := \begin{cases} a_1(n) + 3 & \text{falls } a_1(n) \not\equiv_2 0 \\ a_1(n)/2 & \text{falls } a_1(n) \equiv_2 0. \end{cases}$

Und so fort.

Man zeige: Es gibt ein $k \in \mathbb{Z}_{\geq 0}$ mit $a_k(n) \in \{1, 3\}$.

Hierzu verwende man das allgemeine Induktionsprinzip für die induktiv geordnete Menge $\mathbb{Z}_{\geq 1}$, in der n liegt.

Mathematik 1 für Informatiker

Blatt 2

Hausaufgaben

Abgabe bis Di 17.11.2020 um 23:55 Uhr im Ilias.

Hausaufgabe 5 Sei $P := \{M \subset \mathbb{N} : |M| = 3\}$. Gegeben ist eine Relation (\lozenge) auf P. Untersuchen Sie (\lozenge) auf Reflexivität, Symmetrie, Identitivität und Transitivität.

- (a) $M \lozenge N : \Leftrightarrow (\exists n \in N \ \forall m \in M : m \leqslant n) \text{ für } M, N \in P.$
- (b) $M \lozenge N : \Leftrightarrow |M \cap N| = 1 \text{ für } M, N \in P.$

Hausaufgabe 6

(a) Gegeben ist die folgende Abbildung.

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \begin{cases} 4 & \text{falls } x < 0 \\ (x^2 - 2)^2 & \text{falls } x \geqslant 0 \end{cases}$$

Sei die Relation (\sim) auf \mathbb{R} definiert durch $x \sim y : \Leftrightarrow f(x) = f(y)$ für $x, y \in \mathbb{R}$.

Man zeige: Es ist (\sim) eine Äquivalenzrelation.

Bestimmen Sie die Äquivalenzklasse [2].

(b) Gegeben ist auf $M := \{2, 3, 4, 5, 6\}$ die Relation $m \approx n : \Leftrightarrow m \in n\mathbb{Z}$ für $m, n \in M$. Sei (\sim) die von (\approx) erzeugte Äquivalenzrelation auf M. Geben Sie die Äquivalenzklassen von (\sim) an.

Hausaufgabe 7

- (a) Zeigen Sie, dass $n^2 \geqslant 4n 2$ ist für $n \in \mathbb{Z}_{\geqslant 4}$.
- (b) Finden Sie das minimale $s \in \mathbb{Z}_{\geqslant 2}$, für welches die Aussage $2^s > s^2$ gilt. Zeigen Sie die Aussage $2^n > n^2$ für $n \in \mathbb{Z}_{\geqslant s}$.

Hausaufgabe 8 Sei $M := \{(m, n) \in \mathbb{N} \times \mathbb{N} : m < n\}.$

- (a) Skizzieren Sie M als Teilmenge von $\mathbb{N} \times \mathbb{N}$.
- (b) Für $(m,n) \in M$ schreiben wir

$$f(m,n) := (2m+1) + (2m+3) + \ldots + (2(n-1)+1) = \sum_{k=m}^{n-1} (2k+1).$$

Zeigen Sie die Aussage $f(m,n) = n^2 - m^2$ für alle $(m,n) \in M$.

Hinweis: Dazu kann sowohl das spezielle als auch das allgemeine Induktionsprinzip verwendet werden.