Mathematik 2 für Informatiker

Blatt 17

Platzaufgaben

Platzaufgabe 60

- (a) Berechnen Sie $e^{2\pi i}$.
- (b) Bestimmen Sie die Menge $\{t \in \mathbb{R} : \exp(it) = -1\}.$
- (c) Berechnen Sie ln(2e) ln(2).
- (d) Bestimmen Sie $\lim_{x\to 0} \frac{x}{e^{2x}-1}$.
- (e) Zeigen Sie: Es ist $x^x = \exp(x \ln(x))$ für $x \in \mathbb{R}_{>0}$. Bestimmen Sie $\lim_{x\to 0} x^x$.
- (f) Bestimmen Sie $a, b \in \mathbb{R}$ mit $\sin(x)\cos(2x) = a\sin(x) + b\sin(3x)$ für $x \in \mathbb{R}$.

Platzaufgabe 61

Wir betrachten die Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0} : x \mapsto x^2$. Wir kennen ihre Umkehrfunktion $f^{-1}: \mathbb{R}_{>0} \to \mathbb{R}_{>0} : x \mapsto \sqrt{x}$.

- (a) Berechnen Sie die Ableitung von f^{-1} unter Verwendung der Formel $\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$.
- (b) Berechnen Sie die Ableitung von f^{-1} unter Verwendung der Formel $\frac{d}{dx}x^a = ax^{a-1}$.
- (c) Vergleichen Sie die Ergebnisse aus (a) und (b).

Platzaufgabe 62 Sei $f: [-1,1] \to \mathbb{R}: x \mapsto f(x) := \frac{1}{2+x}$.

Wir betrachten die Unterteilung $\underline{x}:=(-1,-\frac{1}{2},0,\frac{1}{2},1)$ von [-1,1].

- (a) Skizzieren Sie den Graphen von f. Tragen Sie auch die Unterteilung \underline{x} in Ihrer Skizze ein. Veranschaulichen Sie die Untersumme $\mathrm{Unter}(f,\underline{x})$ und die Obersumme $\mathrm{Ober}(f,\underline{x})$ als Flächeninhalte.
- (b) Bestimmen Sie Unter (f, \underline{x}) und Ober (f, \underline{x}) .
- (c) Bestimmen Sie $A, B \in \mathbb{R}$ mit $A \leqslant \int_{-1}^{1} \frac{1}{2+x} dx \leqslant B$ und $B A \leqslant 0,5$.

Mathematik 2 für Informatiker

Blatt 17

Hausaufgaben

Abgabe bis Mo 07.06.21 um 11:00 Uhr im Ilias.

Hausaufgabe 65

- (a) Bestimmen Sie $a, b, c \in \mathbb{R}$ mit $\sin(3x)\cos(x)^2 = a\sin(x) + b\sin(3x) + c\sin(5x)$ für $x \in \mathbb{R}$.
- (b) Bestimmen Sie eine Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $\frac{d}{dx} f(x) = \sin(3x) \cos(x)^2$.
- (c) Bestimmen Sie den Grenzwert $\lim_{x\to -1}(x+1)\ln(x^2+2x+1)$.

Hausaufgabe 66

- (a) Bestimmen Sie $\lim_{x\to+\infty} (1+\frac{1}{x})^x$ unter Verwendung von exp und der Regel von l'Hôpital.
- (b) Sei $x \in \mathbb{R}_{>0}$. Zeigen Sie: Es gibt ein $\vartheta \in [0,1]$ mit $\ln(x+1) \ln(x) = (x+\vartheta)^{-1}$. Folgern Sie: Es ist $\ln(x+1) - \ln(x) \geqslant (x+1)^{-1}$.
- (c) Wir betrachten die Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}: x \mapsto (1 + \frac{1}{x})^x$. Zeigen Sie: Es ist $f'(x) \ge 0$ für $x \in \mathbb{R}_{>0}$.

Folgern Sie: Die Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}: x \mapsto (1+\frac{1}{x})^x$ ist monoton wachsend.

Hausaufgabe 67 Sei $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sinh(x)$ der Sinus hyperbolicus.

Seine Umkehrfunktion heißt Areasinus hyperbolicus, geschrieben

$$f^{-1}: \mathbb{R} \to \mathbb{R}: x \mapsto f^{-1}(x) =: \operatorname{arsinh}(x).$$

- (a) Skizzieren Sie den Graphen y = f(x), den Graphen $y = f^{-1}(x)$ und die Gerade y = x in ein gemeinsames Schaubild.
- (b) Vereinfachen Sie $\cosh(\operatorname{arsinh}(x))^2$ zu einem Polynom, wobei $x \in \mathbb{R}$.
- (c) Bestimmen Sie $\frac{d}{dx} \operatorname{arsinh}(x)$.
- (d) Bestimmen Sie $\lim_{x\to+\infty} \frac{\operatorname{arsinh}(x)}{\ln(x)}$.

Hausaufgabe 68 Sei $f : [-2, 2] \to \mathbb{R} : x \mapsto f(x) := 2^{-x^2}$.

Wir betrachten die Unterteilung $\underline{x} := (-2, -1, 0, 1, 2)$ von [-2, 2].

- (a) Skizzieren Sie den Graphen von f. Tragen Sie auch die Unterteilung \underline{x} in Ihrer Skizze ein. Veranschaulichen Sie Unter (f,\underline{x}) und Ober (f,\underline{x}) als Flächeninhalte.
- (b) Begründen Sie anhand der Skizze: Es ist $\mathrm{Ober}(f,\underline{x})-\mathrm{Unter}(f,\underline{x})\geqslant 1.$
- (c) Bestimmen Sie Unter (f,\underline{x}) und Ober (f,\underline{x}) .
- (d) Bestimmen Sie $A, B \in \mathbb{R}$ mit $A \leqslant \int_{-2}^{2} 2^{-x^2} dx \leqslant B$ und $B A \leqslant 2$.

https://info.mathematik.uni-stuttgart.de/Mathe-2-Inf-SoSe21/