Mathematik für Wirtschaftswissenschaftler

Blatt 4

Platzaufgaben

Platzaufgabe 13 Bestimmen Sie die Ableitung der Funktion f.

- (a) $f: \mathbb{R} \to \mathbb{R}: x \mapsto f(x) := \ln\left(\frac{1}{x^2+1}\right)$
- (b) $f:(-2,0)\to\mathbb{R}:x\mapsto f(x):=x^2\mathrm{e}^x.$ Ist f monoton fallend?
- (c) $f:(0,\pi)\to\mathbb{R}:x\mapsto f(x):=\frac{x}{\sin(x)}$
- (d) $f: \mathbb{R} \to \mathbb{R}: x \mapsto f(x) := 2^x$

Platzaufgabe 14 Berechnen Sie:

- (a) $e^{-\ln(3)}$
- (b) $\ln(\frac{1}{4}) + \ln(4)$
- (c) $\ln(2x) \ln(x)$ für $x \in \mathbb{R}_{>0}$
- (d) $\log_2(\sqrt[3]{16})$

Platzaufgabe 15 Gegeben sei die Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}: x \mapsto f(x) := xe^x$. Sei $g: \mathbb{R}_{>0} \to \mathbb{R}_{>0}: y \mapsto g(y)$ ihre Umkehrfunktion. Es ist also $g(y) = f^{-1}(y)$ für $y \in \mathbb{R}_{>0}$.

- (a) Bestimmen Sie f(1).
- (b) Bestimmen Sie g(e).
- (c) Bestimmen Sie g'(e).
- (d) Ist $f^{-1}(y) = \frac{1}{f(y)}$ für $y \in \mathbb{R}_{>0}$?

Platzaufgabe 16 Sei

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}: x \mapsto f(x) := \frac{1}{x}.$$

Berechnen Sie direkt mit Hilfe der Definition die Ableitung f'(x). Berechnen Sie die Ableitung f'(x) nochmals mittels einer Regel. Vergleichen Sie.

Mathematik für Wirtschaftswissenschaftler

Blatt 4

Hausaufgaben

Abgabe bis Do 25.11.21 in den Präsenzübungen oder bis Mi 24.11.21 um 23:55 Uhr im Ilias. Die Anmeldung zur ersten Scheinklausur läuft bis zum 06.12.21 im Ilias unter https://ilias3.uni-stuttgart.de/goto_Uni_Stuttgart_book_2708920.html

Hausaufgabe 13 Man berechne für die Funktion $f: D \to \mathbb{R}: x \mapsto f(x)$ die Ableitung f'.

(a)
$$f(x) = x^5 \sin(x)$$
 auf $D = \mathbb{R}$

(b)
$$f(x) = \ln(\sin(x))$$
 auf $D = (0, \pi)$

(c)
$$f(x) = \frac{e^x}{\cos(x)}$$
 auf $D = (-\frac{\pi}{2}, \frac{\pi}{2})$

(d)
$$f(x) = x^x$$
 auf $D = \mathbb{R}_{>0}$

Hausaufgabe 14

- (a) Sei $t \in \mathbb{R}$ ein Parameter. Sei $f_t : \mathbb{R} \to \mathbb{R} : x \mapsto f_t(x) := e^{tx}$. Bestimmen Sie $\{t \in \mathbb{R} : \text{Es ist } 2f''_t(x) + 9f'_t(x) - 5f_t(x) = 0 \text{ für } x \in \mathbb{R} \}$.
- (b) Bestimmen Sie $\{x \in \mathbb{R}_{>0} : \frac{1}{2} \ln(x) \ln(3) > \ln(2)\}.$

Hausaufgabe 15 Sei $f : \mathbb{R} \to \mathbb{R}_{>0} : x \mapsto f(x) := 2^x$.

Sei $g: \mathbb{R}_{>0} \to \mathbb{R}: y \mapsto g(y)$ ihre Umkehr
funktion.

- (a) Bestimmen Sie g'(y) unter Verwendung der Formel $g'(y) = \frac{1}{f'(g(y))}$.
- (b) Bestimmen Sie die Umkehrfunktion g(y). Verwenden Sie dies für eine direkte Berechnung von g'(y).

Hausaufgabe 16 Es sei $f: \mathbb{R} \to \mathbb{R}: x \mapsto f(x) := (x^2 - 1)e^x$.

- (a) Bestimmen Sie die Nullstellen von f.
- (b) Bestimmen Sie die lokalen Extremstellen von f.
- (c) Überprüfen Sie, dass f auf dem Intervall $(-1-\sqrt{2},-1+\sqrt{2})$ streng monoton fällt.
- (d) Skizzieren Sie den Graphen von f. (Dazu können Sie einen Taschenrechner verwenden.)