Gruppenübung 5

Aufgabe 1 (schriftliche Aufgabe - 4 Punkte)

a. Gegeben sei die reelle Potenzreihe

$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}} x^n.$$

Bestimmen Sie ihren Konvergenzradius. Für welche $x \in \mathbb{R}$ konvergiert die Reihe?

b. Sei $f(x) = \ln(\sin(x))$. Man kann $\ln(\sin(1.5))$ approximieren mit Hilfe des Taylorpolynoms $T_4(f,x,\frac{\pi}{2})$. Bestimmen Sie $T_4(f,x,\frac{\pi}{2})$ und berechnen Sie den Fehler $|\ln(\sin(1.5)) - T_4(f, 1.5, \frac{\pi}{2})|$ mit einem Rechner. Runden Sie auf zehn Nachkommastellen.

Aufgabe 2 (Taylorentwicklung)

- a. Gegeben sei die Funktion $f(x) = x\sqrt[3]{1+2x}$.
 - i. Berechnen Sie die ersten zwei Ableitungen von f.
 - ii. Bestimmen Sie die Taylorpolynome $T_2(f, x, 0)$ und $T_1(f, x, \frac{7}{2})$.
 - iii. Bestimmen Sie mit welcher Genauigkeit das Taylorpolynom $T_1(f, x, \frac{7}{2})$ die Funktion f im Intervall [3,4] approximiert durch das Restglied

$$\sup_{x \in [3,4]} |f(x) - T_1(f, x, \frac{7}{2})|,$$

abzuschätzen.

b. Bestimmen Sie die Taylorreihe von $g(x) = e^{x^2}$ um $x_0 = 0$ und ermitteln Sie ihren Konvergenzradius.

Hinweis: Verwenden Sie den Identitätssatz und die Taylorreihe von $h(x) = e^x$.

Aufgabe 3 (Konvergenzradius)

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen.

a.
$$\sum_{n=1}^{\infty} \frac{n^4 - 4n^3}{n^3 + n^2} x^n$$

b.
$$\sum_{n=0}^{\infty} \frac{4}{(n+1)!} x^n$$

a.
$$\sum_{n=1}^{\infty} \frac{n^4 - 4n^3}{n^3 + n^2} x^n$$
 b.
$$\sum_{n=0}^{\infty} \frac{4}{(n+1)!} x^n$$
 c.
$$\sum_{n=0}^{\infty} (4 + (-1)^n)^{-3n} x^{5n}$$

Termin: 22./23.05.2017

Aufgabe 4 (Potenzreihen)

Für welche $x \in \mathbb{R}$ konvergieren die folgenden Reihen?

a.
$$\sum_{n=1}^{\infty} \frac{x^n}{n2^{n+1} - 2^n}$$

a.
$$\sum_{n=1}^{\infty} \frac{x^n}{n2^{n+1}-2^n}$$
 b. $\sum_{n=1}^{\infty} \left(\frac{2n+1}{n}\right)^n \left(\frac{x}{1+x}\right)^n$ c. $\sum_{n=0}^{\infty} \frac{(3x-2)^n}{5^n(n+1)\sqrt{n+3}}$

c.
$$\sum_{n=0}^{\infty} \frac{(3x-2)^n}{5^n(n+1)\sqrt{n+3}}$$

Aufgabe 5 (Punktweise und gleichmäßige Konvergenz)

Untersuchen Sie die folgenden Funktionenreihen auf punktweise und gleichmäßige Konvergenz auf I, wobei $I = 0, \infty$ für a. und $I = \mathbb{R}$ für b. und c..

a.
$$\sum_{n=1}^{\infty} n e^{-nx}$$

b.
$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$$

c.
$$\sum_{n=1}^{\infty} \frac{x}{1 + n^4 x^2}$$

Aufgabe 6 (Anwendungen des Satzes von Taylor)

Sei $y \in \mathbb{R}$. Berechnen Sie den Grenzwert

$$\lim_{n\to\infty} \left(1+\frac{y}{n^m}\right)^n$$

in Abhängigkeit von m > 0.

Hinweis: Verwenden Sie die Stetigkeit der Funktion $f(x) = e^x$, die Identität $e^{\ln(a)} = a$ für a > 0 und die Taylorapproximation $\ln(1+x) = x + O(x^2)$ für $x \to 0$.